How do we represent the meaning of a word?

Definition: Meaning (Webster dictionary)

the idea that is represented by a word, phrase, etc.

the idea that a person wants to express by using
words, signs, etc.

the idea that is expressed in a work of writing, art, etc.
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How to represent meaning in a computer?

Common answer: Use a taxonomy like WordNet that has
hypernyms (is-a) relationships and

from nltk.corpus import wordnet as wn
panda = wn.synset('panda.n.01')

hyper = lambda s: s.hypernyms()
list(panda.closure(hyper)

synonym sets (good):

[Synset('procyonid.n.01"),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset(‘mammal.n.01’'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),
Synset(‘animal.n.01"),
Synset('organism.n.01'),
Synset('living_thing.n.01"),
Synset('whole.n.02'),
Synset('object.n.01’),
Synset('physical_entity.n.01'),
Synset('entity.n.01')]

2

S: (adj) full, good

S: (adj) estimable, good, honorable, respectable
S: (adj) beneficial, good

S: (adj) good, just, upright

S: (adj) adept, expert, good, practiced,
proficient, skillful

S: (adj) dear, good, near

S: (adj) good, right, ripe

S: (adv) well, good

S: (adv) thoroughly, soundly, good
S: (n) good, goodness

S: (n) commodity, trade good, good
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Problems with this discrete representation

* Great as resource but missing nuances, e.g.
synonymes:
adept, expert, good, practiced, proficient, skillful?

* Missing new words (impossible to keep up to date):
wicked, badass, nifty, crack, ace, wizard, genius, ninjia

* Subjective
* Requires human labor to create and adapt

e Hard to compute accurate word similarity =
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Problems with this discrete representation

The vast majority of rule-based and statistical NLP work regards
words as atomic symbols: lhobel, @owfer@\f:e, walle

In vector space terms, this is a vector with one 1 and a lot of zeroes

[coocococo0co00001 000 0]
Dimensionality: 20K (speech) — 50K (PTB) — 500K (big vocab) — 13M (Google 1T)
We call this a “one-hot” representation. Its problem:

mobkel [c 0000000001 0000C] AND
hotel, [co 00000100000 00] = O©



Distributional similarity based representations

You can get a lot of value by representing a word by
means of its neighbors

“You shall know a word by the company it keeps”

(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

N These words will represent banking 24



How to make neighbors represent words?

Answer: With a cooccurrence matrix X
e 2 options: full document vs windows

* Word - document cooccurrence matrix will give
general topics (all sports terms will have similar
entries) leading to “Latent Semantic Analysis”

*  Window allows us to capture both syntactic (POS) and
semantic information 2
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Window based cooccurence matrix

e Window length 1 (more common: 5 -10)

e Symmetric (irrelevant whether left or right context)

e Example corpus:

e |like deep learning.
e | like NLP.

* | enjoy flying.
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Window based cooccurence matrix

e Example corpus:

e |like deep learning.
e | like NLP.

* | enjoy flying.

counts |1 __|like | enjoy |deep |learning [NLP |flying |
0 0 0

enjoy
deep
learning
NLP
flying
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Problems with simple cooccurrence vectors

Increase in size with vocabulary

Very high dimensional: require a lot of storage

Subsequent classification models have sparsity issues

—> Models are less robust
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Solution: Low dimensional vectors

e |dea: store “most” of the important information in a
fixed, small number of dimensions: a dense vector

e Usually around 25 - 1000 dimensions

e How to reduce the dimensionality?
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Method 1: Dimensionality Reduction on X

Singular Value Decomposition of cooccurrence matrix X.

m r r m
S v,
n = n ‘ ‘ ‘3 r 18233. " r %
| Y
X U S v
m k k
‘ ‘ ‘ g 0 g
n = nUUL Kl 7S, |k v,
| 0 s '
X U S V'

X is the best rank k approximation to X, in terms of least squares.
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Simple SVD word vectors in Python

Corpus:
| like deep learning. | like NLP. | enjoy flying.

import numpy as np
la = np.linalg
words = ["I", "like", "enjoy",
"deep", "learnig","NLP","flying","."]
X = np.array([(10,2,1,0,0,0,0,01,

[2,0,0,1,0,1,0,0],
(+9,9,0,0,0,1,01,
(0,1,9,0,1,0,0,017,
[0'0'0,1'0,0,0,1],
[0,1,0,0,0'0,0,1],
[0,0’1,0’0,0,0,1],
(¢,9,0,0,1,1,1,011)

U, s, Vh = la.svd(X, full matrices=False)

12 Richard Socher 4/1/15



Simple SVD word vectors in Python

Corpus: | like deep learning. | like NLP. | enjoy flying.
Printing first two columns of U corresponding to the 2 biggest singular values

. for i in xrange(len(words)):
08} plt.text(U[i,0], U[i,1], words[i])

06 | like !

04} -
enjoy
02} | _

0ol learnig |

flying
02} Nﬁep il

13 -038 -0.6 -0.4 -0.2 0.0 0.2



Word meaning is defined in terms of vectors

* In all subsequent models, including deep learning models, a
word is represented as a dense vector

4 )
0.286

0.792
-0.177
-0.107

0.109
-0.542

0.349

0.271

linguistics =
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Hacks to X

15

Problem: function words (the, he, has) are too
frequent = syntax has too much impact. Some fixes:

*  min(X,t), with t~100

* lgnore them all

Ramped windows that count closer words more

Use Pearson correlations instead of counts, then set
negative values to 0

+++ o
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Interesting semantic patters emerge in the vectors

WRIST
ANKLE
SHOULDER
ARM
LEG
HAND
FOOT
HEAD
NOSE
FINGER
TOE
FACE
EAR
EYE

TOOTH

DOG
CAT
PUPPY
KITTEN

COow

— MOUSE

— TURTLE
L———< OYSTER
LION

BULL

CHICAGO

ATLANTA
MONTREAL
NASHVILLE

TOKYO

CHINA

RUSSIA
AFRICA
ASIA
EUROPE

AMERICA
BRAZIL
MOSCOW
FRANCE
HAWAII

An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence
Rohde et al. 2005
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Interesting semantic patters emerge in the vectors

o ING
m CHGSENOSE
= STOLEN
e STEAL

o0 STOLE
OSTEALING

0 TOOK

= THROMARTIRE W
m SHOWN
0 SHOWED m EATENT
OATE
e SHOW
" GRQWNow
o0 GREW
O0GROWING

An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence
Rohde et al. 2005
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Interesting semantic patters emerge in the vectors

ODRIVE

0 CLEAN

e DRIVER

e SWIMMER

O SWIM

OTREAT

¢ JANITOR
o STUDENT

e TEACHER

e DOCTOR

e PRIE

o MARRY

o PRAY

BRIDE
ST

An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence

Rohde et al. 2005
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Problems with SVD

Computational cost scales quadratically for n x m matrix:
O(mn?) flops (when n<m)

—> Bad for millions of words or documents

Hard to incorporate new words or documents

Different learning regime than other DL models
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Idea: Directly learn low-dimensional word vectors

20

Old idea. Relevant for this lecture & deep learning:

Learning representations by back-propagating errors.
(Rumelhart et al., 1986)

A neural probabilistic language model (Bengio et al., 2003)
NLP from Scratch (Collobert & Weston, 2008)

A recent and even simpler model:
word2vec (Mikolov et al. 2013) = intro now
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Main Idea of word2vec

21

Instead of capturing cooccurrence counts directly,
Predict surrounding words of every word

Both are quite similar, see “Glove: Global Vectors for
Word Representation” by Pennington et al. (2014)

Faster and can easily incorporate a new sentence/
document or add a word to the vocabulary

Richard Socher 4/1/15



Details

22

Predict surrounding words in a window of length c of
every word.

Objective function: Maximize the log probability of
any context word given the current center word:

J(0) = %Z > logp(wiyj|wy)

t=1 —CSjSC,j#O

Richard Socher 4/1/15



Details

* Predict surrounding words in a window of length c of
every word

For p(w:|w:) the simplest first formulation is

;)T
exp (vwo va>

7 p(wolwr) =

W ;T
Zw:1 eXp (Uw U'(UI)

 wherevand V' are “input” and “output” vector
representations of w (so every word has two vectors!)

* This is essentially “dynamic” logistic regression
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Cost/Objective functions

24

We will optimize (maximize or minimize)
our objective/cost functions

For now: minimize - gradient descent

Refresher with trivial example: (from Wikipedia) P

Find a local minimum of the function
fix)=x*-3x3+2, with derivative f'(x)=4x3-9x.

x_old 0

X_new 6 # The algorithm starts at x=6
eps 0.01 # step size
precision 0.00001

def f derivative(x):
return 4 * x**3 - 9 % xkx*k)

while abs(x_new - x old)
x old X_new
x new = x old - eps * £ derivative(x_old)

precision:

print("Local minimum occurs at", x new)

/15

'



Derivations of gradient

25

Whiteboard (see video if you're not in class ;)

Most basic Lego piece, speed will depend on
participation
OxT a dalx

Useful basics: = = — a
0xX X

Chain rule! If y = flu) and u = g(x), i.e. y=f(g(x)), then:

dy _ dy du
dr  du dx

Richard Socher 4/1/15



Whiteboard!
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Approximations: PSet 1

* With large vocabularies this objective function is not
scalable and would train too slowly! 2> Why?

* |dea: approximate the normalization or

* Define negative prediction that only samples a few
words that do not appear in the context

* Similar to focusing on mostly positive correlations

* You will derive and implement this in Pset 1!

27 Richard Socher 4/1/15



Linear Relationships in word2vec

These representations are very good at encoding dimensions of
similarity!
* Analogies testing dimensions of similarity can be solved quite

well just by doing vector subtraction in the embedding space
Syntactically
° X X

apple ~ Xapples = Xcar ~ Xcars = Xfamily ~ Xfamilies

 Similarly for verb and adjective morphological forms
Semantically (Semeval 2012 task 2)

® Xsnhirt ~ Xclothing = Xchair = Xfurniture

® Xking ~ Xman = Xqueen ~ Xwoman

28



Count based vs direct prediction

LSA, HAL (Lund & Burgess),
COALS (Rohde et al),
HeIIinger-PCA (Lebret & Collobert)

- NNLM, HLBL, RNN, Skip-

gram/CBOW, (Bengio et al; Collobert

& Weston; Huang et al; Mnih & Hinton;
Mikolov et al; Mnih & Kavukcuoglu)

- Fast training

- Efficient usage of statistics

* Primarily used to capture word
similarity

+ Disproportionate importance
given to small counts

This is SVD based

29 J

- Scales with corpus size
- Inefficient usage of statistics

- Generate improved performance
on other tasks

« Can capture complex patterns
beyond word similarity

Richard Socher 4/1/15



Combining the best of both worlds: GloVe

1 -
J =53 f(Py)(wi-d;—logPy)* | 1

tJ

e Fast training
eScalable to huge corpora

e Good performance even with small corpus, and small
vectors
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Glove results

Nearest words to
frog:

. frogs

. toad

. litoria

. leptodactylidae

. rana

. lizard

. eleutherodactylus

N oo b WN PR

rana eleutherodactylus
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Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

a:b:c:?

man:woman :: king:?

king 0.300.70°

man 0.200.20 |

woman [ 0.600.30 ]

—

0.75

0.5

gueen [0.700.80 ]

0.25

)Twa:

(wp — wq + we
d = arg max
x ||wb—wa‘|’w0||

queen
king

woman
Mman

0.25 0.5 0.75 1




Glove Visualizations
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Glove Visualizations: Company - CEO

0.6
Caterpillar—— _
0.4 Chrysler.. _ il S
United~ _ _ S e S e o
S D S o o —+ Oberhelman
R e — ~Marchionne
0.2 R T
Exxone— — — — _ _ _ _ s .
—————— ~ _—__Smisek
Tillerson
Wal-Mart~ - - - - - - - — - = — — — — — — — —* McMillon
0+ - Citigroup,_ _
T T T - - - == === m_ _, Corbat
Rometty
-0.2F
i o o (S it s G (e e . e .Dauman
Viacom ~McAdam
_ _— — = "Colao
-0.4F e e
Verizon. — = — — — 7
Vodafone
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Glove Visualizations: Superlatives

_ _ — — slowest
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Word embedding matrix

e |nitialize most word vectors of future models with our “pre-
trained” embedding matrix [, ¢ R™*IV

V]
e o o )
e o o ® 0
| = e o o o 0|,
e o o o0

aardvark a at ...

e Also called a look-up table

* Conceptually you get a word’s vector by left multiplying a
one-hot vector e (of length |V|) by L: x=Le

36



Advantages of low dimensional word vectors

What is the major benefit of deep learned word vectors?

Ability to also propagate any information into them
via neural networks (next lecture).

e;ﬂ fle,d)

E ,e)LTf(c’,d)
C

~ exp(Se.a)
plefz) = > . exp(Se.a)

37

Cx2
P(cld,]) = S eR™”




Advantages of low dimensional word vectors

38

Word vectors will form the basis for all subsequent
lectures.

All our semantic representations will be vectors!

We can compute compositional representations for
longer phrases or sentences with them and solve lots
of different tasks. 2 Next lecture!



Refresher: The simple word2vec model

e Main cost function J:

JO) =23 Y lompluessfu)

t=1 _CSJSCL]#O

;T
exp (va va>

* With probabilities defined as: p(wo|wy) = =
> 1 XD (v{UvaI)

e We derived the gradient for the internal vectors vy,
(v. on the board)

Lecture 1, Slide 1 Richard Socher 4/6/15



Calculating all gradients!

e We went through gradients for each center vector vin a window
e We also need gradients for external vectors v’ (u on the board)

e Derijvel

e Generally in each window we will compute updates for all
parameters that are being used in that window.

e For example window size c =1, sentence:
“I like learning .”

e First window computes gradients for:
* internal vector vy, and external vectors v, and V' i, nine

e Next window in that sentence?

Lecture 1, Slide 2 Richard Socher 4/6/15



Compute all vector gradients!

e We often define the set of ALL parameters in a model in terms
of one long vector §

* Inour case with _ )
d-dimensional vectors Vaardvark
and VUq
V many words:

H — U,/zebra c RQdV
vaardvark

a

/

_ vzebra _
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Gradient Descent

* To minimize J(6) over the full batch (the entire training data)
would require us to compute gradients for all windows

e Updates would be for each element of 0 :

new _ pold 0
07" = 07 — o ggora J (0)

e With step size o

* |In matrix notation for all parameters:

pnew — eold . &aeold J(@)
grew — gold — o7, J(0)
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Vanilla Gradient Descent Code

pnew — Hold . OéVQJ(@)

while True:
theta grad = evaluate gradient(J,corpus,theta)
theta = theta - alpha * theta grad
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Intuition

e For a simple convex function over two parameters.

e Contour lines show levels of objective function

e See Whiteboard
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Stochastic Gradient Descent

e But Corpus may have 40B tokens and windows
* You would wait a very long time before making a single update!

e Very bad idea for pretty much all neural nets!

e |nstead: We will update parameters after each window t
— Stochastic gradient descent (SGD)

grew = gl — aV4.J,(6)

while True:
window = sample window(corpus)
theta grad = evaluate gradient(J,window,theta)
theta = theta - alpha * theta grad

Lecture 1, Slide 7 Richard Socher 4/6/15



Stochastic gradients with word vectors!

e Butin each window, we only have at most 2c -1 words,
so VgJ¢(0) is very sparse!
- 0 _

Vo Jt(e) =10 c R24V

/
Ulearning

Lecture 1, Slide 8 ~  Richard Socher - 4/6/15



Stochastic gradients with word vectors!

e We may as well only update the word vectors that actually
appear!

e Solution: either keep around hash for word vectors or only
update certain columns of full embedding matrix L and L’
Vv

®) O O ® O
o) O O ® o
d O ® O O O
o) e O ® O

e |mportant if you have millions of word vectors and do
distributed computing to not have to send gigantic updates
around.
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Approximations: PSet 1

e The normalization factor is too computationally expensive

;)T
exp (fu,wo ’UwI)

W ;) T
Zw:l eXp (Uw ij)

p(wolwr) =

e Hence, in PSetl you will implement the skip-gram model

e Main idea: train binary logistic regressions for a true pair (center
word and word in its context window) and a couple of random
pairs (the center word with a random word)
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PSet 1: The skip-gram model and negative sampling

e From paper: “Distributed Representations of Words and Phrases
and their Compositionality” (Mikolov et al. 2013)

k

T T
log O'(?}:UO Vwy ) + Z Eo; P, (w) [log 0(—?);)2, va)}
i=1

e Where k is the number of negative samples and we use,

1m —

+ The sigmoid function! o(x) = = /7
(we'll become good friends soon) o5/

* So we maximize the probability /
of two words co-occurring in first log  -——1 ol
9
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PSet 1: The skip-gram model and negative sampling
e Slightly clearer notation:

log & (vyrvno0) + Z log o (—vyrvy;)
i~ Py (w)

e Max. probability that real outside word appears,
minimize prob. that random words appear around center word

* P, _U(w)¥4/z,
the unigram distribution U(w) raised to the 3/4rd power
(We provide this function in the starter code).

e The power makes less frequent words be sampled more often
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PSet 1: The continuous bag of words model

e Main idea for continuous bag of words (CBOW): Predict center
word from sum of surrounding word vectors instead of
predicting surrounding single words from center word as in skip-

gram model

e To make PSet slightly easier:

The implementation for the CBOW model is not required and for
bonus points!

Lecture 1, Slide 13 Richard Socher 4/6/15



What to do with the two sets of vectors?

e We end up with Land L’ from all the vectors vand Vv’

e Both capture similar co-occurrence information. It turns out, the
best solution is to simply sum them up:

I‘ﬁnal =L+ L’

 One of many hyperparameters explored in GloVe: Global
Vectors for Word Representation (Pennington et al. (2014)

Lecture 1, Slide 14 Richard Socher 4/6/15



How to evaluate word vectors?

e Related to general evaluation in NLP: Intrinsic vs extrinsic
* Intrinsic:

* Evaluation on a specific/intermediate subtask

* Fast to compute

* Helps to understand that system
* Not clear if really helpful unless correlation to real task is established

e Extrinsic:
e Evaluation on a real task
e Can take a long time to compute accuracy
* Unclear if the subsystem is the problem or its interaction or other
subsystems
* |If replacing one subsystem with another improves accuracy 2 Winning!
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Intrinsic word vector evaluation

Word Vector Analogies: Syntactic and Semantic

)Twa:

B (wy — wg + we
a:b ::c:? — d = arg max
T [|wp — wa + we|

man:woman :: king:?

e Evaluate word vectors by how well their cosine distance after addition
captures intuitive semantic and syntactic analogy questions

e Discarding the input words from the search!

e Problem: What if the information is there but not linear?
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Intrinsic word vector evaluation

e Word Vector Analogies: Syntactic and Semantic examples from

. city-in-state

Chicago lllinois Houston Texas
Chicago lllinois Philadelphia Pennsylvania
Chicago lllinois Phoenix Arizona
Chicago lllinois Dallas Texas

Chicago lllinois Jacksonville Florida
Chicago lllinois Indianapolis Indiana
Chicago lllinois Austin Texas

Chicago lllinois Detroit Michigan
Chicago lllinois Memphis Tennessee
Chicago lllinois Boston Massachusetts

Lecture 1, Slide 17 Richard Socher

problem: different cities
may have same name
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Intrinsic word vector evaluation

e Word Vector Analogies: Syntactic and Semantic examples from

: capital-world

Abuja Nigeria Accra Ghana

Abuja Nigeria Algiers Algeria

Abuja Nigeria Amman Jordan

Abuja Nigeria Ankara Turkey

Abuja Nigeria Antananarivo Madagascar
Abuja Nigeria Apia Samoa

Abuja Nigeria Ashgabat Turkmenistan
Abuja Nigeria Asmara Eritrea

Abuja Nigeria Astana Kazakhstan

Lecture 1, Slide 18 Richard Socher

problem: can change
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Intrinsic word vector evaluation

e Word Vector Analogies: Syntactic and Semantic examples from

: gram4-superlative

bad worst big biggest

bad worst bright brightest
bad worst cold coldest
bad worst cool coolest
bad worst dark darkest
bad worst easy easiest
bad worst fast fastest

bad worst good best

bad worst great greatest
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Intrinsic word vector evaluation

e Word Vector Analogies: Syntactic and Semantic examples from

: gram7/-past-tense

dancing danced decreasing decreased
dancing danced describing described
dancing danced enhancing enhanced
dancing danced falling fell

dancing danced feeding fed

dancing danced flying flew

dancing danced generating generated
dancing danced going went

dancing danced hiding hid

dancing danced hitting hit

Lecture 1, Slide 20 Richard Socher
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Analogy evaluation and hyperparameters

e Most careful analysis so far: Glove word vectors (which also capture
cooccurrence counts but more directly so than skip-gram)

Model Dim. Size | Sem. Syn. Tot.
ivLBL 100 1.5B | 559 50.1 53.2
HPCA 100 1.6B | 42 164 108
GloVe 100 1.6B | 67.5 543 60.3
SG 300 1B | 61 61 61
CBOW 300 1.6B | 161 526 36.1
vLBL 300 1.5B | 542 64.8 60.0
ivLBL 300 1.5B | 652 63.0 64.0
GloVe 300 1.6B | 80.8 61.5 70.3
SVD 300 6B | 63 81 73
SVD-S 300 6B | 36.7 46.6 42.1
SVD-L 300 6B | 56.6 63.0 60.1
CBOW' 300 6B | 63.6 674 657
SG* 300 6B | 73.0 66.0 69.1
GloVe 300 6B | 774 67.0 717
CBOW 1000 6B | 57.3 689 63.7
SG 1000 6B | 66.1 65.1 656
SVD-L 300 42B | 384 582 492
Glove 300 42B | 81.9 69.3 75.0
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Analogy evaluation and hyperparameters

e  Asymmetric context (only words to the left) are not as good

80

A 70
—
70r 1 65
f
— 60r —_ — 601
&, 2 5
> > >
8 50 8 & 55
3 3 >
3 3 3
< 40 | < < 5df
=== Semantic === Semantic == Semantic
30 =={}== Syntactic | 45 ==}== Syntactic ] 4 =={J== Syntactic
==O== Overall ==O== Overall === Overall
L L L L L 4 L L L 4 L
200 100 200 300 400 500 600 02 4 6 8 10 02 6 8 10
Vector Dimension Window Size Window Size
(a) Symmetric context (b) Symmetric context (c) Asymmetric context

e Best dimensions ~300, slight drop-off afterwards
e But this might be different for downstream tasks!

e  Window size of 8 around each center word is good for Glove vectors
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Analogy evaluation and hyperparameters

e More training time helps

Lecture 1, Slide 23
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Analogy evaluation and hyperparameters

e More data helps, Wikipedia is better than news text!

- Semantic - Syntactic - Overall

85 [

Accuracy [%]

. . . Gigaword5 +
Wiki2010 Wiki2014 Gigaword5 Wiki2014 Common Crawl
1B tokens 1.6B tokens 4.3B tokens 6B tokens 42B tokens
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Intrinsic word vector evaluation

e Word vector distances and their correlation with human judgments

e Example dataset: WordSim353

Word 1 Word 2

tiger cat
tiger tiger
book  paper
computer
plane car
professor

stock phone
stock CD
stock  jaguar

Lecture 1, Slide 25
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7.35

10.00

7.46

internet 7.58
5.77

doctor 6.62
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1.31

0.92
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Correlation evaluation

e Word vector distances and their correlation with human judgments

Model Size |WS353 MC RG SCWS RW
SVD 6B | 353 35.1 425 383 256
SVD-S 6B | 56.5 715 71.0 53.6 34.7
SVD-L 6B | 657 727 75.1 565 37.0
CBOW'™ 6B | 57.2 656 682 57.0 325
SG' 6B | 62.8 652 69.7 58.1 372
GloVe 6B | 65.8 727 77.8 539 38.1
SVD-L 42B| 74.0 764 74.1 58.3 399
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 684 79.6 754 594 455

e Some ideas from Glove paper have been shows to improve skip-gram (SG)
model also (e.g. sum both vectors)
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But what about ambiguity?

e You may hope that one vector captures both kinds of
information (run = verb and noun) but then vector is pulled in
different directions

e Alternative described in: Improving Word Representations Via
Global Context And Multiple Word Prototypes (Huang et al.
2012)

e |dea: Cluster word windows around words, retrain with each
word assigned to multiple different clusters bank,, bank,, etc
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But what about ambiguity?

e Improving Word Representations Via Global Context And
Multiple Word Prototypes (Huang et al. 2012)
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Extrinsic word vector evaluation
e Extrinsic evaluation of word vectors: All subsequent tasks in this class

e One example where good word vectors should help directly: named entity
recognition: finding a person, organization or location

Model | Dev Test ACE MUC7
Discrete | 91.0 854 774 73.4
SVD 90.8 85.7 77.3 73.7
SVD-S | 91.0 85.5 77.6 74.3
SVD-L | 90.5 84.8 73.6 71.5
HPCA | 92.6 88.7 81.7 80.7
HSMN | 90.5 8577 78.7 74.7
CW 922 874 81.7 80.2
CBOW | 93.1 88.2 82.2 81.1
GloVe | 93.2 88.3 829 82.2

e Next: How to use word vectors in neural net models!
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Simple single word classification

 What is the major benefit of deep learned word
vectors?

* Ability to also classify words accurately

e Countries cluster together = classifying location words
should be possible with word vectors

* Incorporate any information into them other tasks

* Project sentiment into words to find most positive/
negative words in corpus
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The softmax

Logistic regression = Softmax classification on word
vector x to obtain probability for class y:

exp(W,,.z)
S exp(We.x)

p(ylr) =

where: W ¢ R¢ x4

Generalizes >2 classes
(for just binary sigmoid unit would suffice as in skip-gram)
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The softmax - details

e Terminology: Loss function = cost function = objective function
e Loss for softmax: Cross entropy

e To compute p(y|x): first take the y'th row of W and multiply that
with row with x:

d
1=1
e Compute all f_for c=1,...,C
e Normalize to obtain probability with softmax function:

eXP(fy)
S exp(fe)

p(ylz) =
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The softmax and cross-entropy error

e The loss wants to maximize the probability of the correct classy

e Hence, we minimize the negative log probability of that class:

—lo r)=—lo exp(fy) )
it =

e As before: we sum up multiple cross entropy errors if we have
multiple classifications in our total error function over the
corpus (more next lecture)
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Background: The Cross entropy error

e Assuming a ground truth (or gold or target) probability
distribution that is 1 at the right class and O everywhere else:

=1[0,...,0,1,0,...0] and our computed probability is g, then the
Cross entropy is:

Zp ) log gq(c

e Because of one-hot p, the onIy term left is the negative
probability of the true class

e Cross-entropy can be re-written in terms of the entropy and
Kullback-Leibler divergence between the two distributions:

H(p,q) = H(p) + Dk r(p|lq)
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The KL divergence

e Cross entropy: H(p,q) = H(p) + Dk 1(pllq)

e Because p is zero in our case (and even if it wasn’t it would be
fixed and have no contribution to gradient), to minimize this is
equal to minimizing the KL divergence

e The KL divergence is not a distance but a non-symmetric
measure of the difference between two probability distributions
p and g

C

Dir(pllg) =D p(c)] 2 400

c=1
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PSet 1

e Derive the gradient of the cross entropy error with respect to
the input word vector x and the matrix W
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Simple single word classification

e Example: Sentiment

e Two options: train only softmax weights W and fix word vectors
or also train word vectors

e Question: What are the advantages and disadvantages of
training the word vectors?

e Pro: better fit on training data

e Con: Worse generalization because the words move in the
vector space
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Visualization of sentiment trained word vectors
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Next level up: Window classification

e Single word classification has no context!

e Let’s add context by taking in windows and classifying the center
word of that window!

e Possible: Softmax and cross entropy error or max-margin loss

e Next class!

Lecture 1, Slide 39 Richard Socher 4/6/15



References

40

Richard Socher

4/6/15



Overview Today:

e General classification background
e Updating word vectors for classification
e Window classification & cross entropy error derivation tips

 Asingle layer neural network!

(Max-Margin loss and backprop)
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Refresher: Classification setup and notation

e Generally we have a training dataset consisting of samples
{Xi/yi}Nizl

* X -inputs, e.g. words (indices or vectors!), context windows,
sentences, documents, etc.

* vy, -labels we try to predict, e.g. sentiment, other words, named
entities (loc., org. per.), buy/sell decision, later: multi-word
sequences
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Classification intuition

e Training data: {x,y.}"._;

e Simple illustration case:
* Fixed 2d word vectors to classify
* Using logistic regression
e - linear decision boundary =

e General ML: assume x is fixed and
only train logistic regression weights Visualizations with ConvNetJS by Karpathy

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

W and only modify the decision boundary
exp(W,.x)

S exp(W,.x)

Lecture 1, Slide 4 Richard Socher 4/8/15

ply|z) =



Classification notation

General ML: only train logistic
regression weights and hence
only modify the decision boundary

Loss function over dataset {x,y.}"._,

Where for each data pair (x,y,):

We can write f in matrix notation and

index elements of it based on class:

Lecture 1, Slide 5 Richard Socher
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Classification: Regularization!

e Really full loss function over any dataset includes regularization
over all parameters 6:

N

1 elvi )
J(0) = NZ—log (ZC - ) +A§k:9k

i—=1 c=1€"°

e Regularization will prevent overfitting A

when we have a lot of features (or
later a very powerful/deep model)
e x-axis: more powerful model or
more training iterations

* Blue: training error, red: test error
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Classification difference with word vectors

e For general machine learning 6 usually
only consists of columns of W:

W
0=|": = W(:) € R“
W.q

e So we only update the decision
boundary

Visualizations with ConvNetJS by Karpathy

Vw,
V@J(@) = c RC¢
- Vw,
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Classification difference with word vectors

 For general ML @ usually only consists of columns of W

e Additionally common in deep learning:

* Learn both W and word vectors x

Vo (6)

Lecture 1, Slide 8

- Vw,
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V
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Loosing generalization by re-training word vectors

Setting: Training logistic regression for movie review sentiment
and in the training data we have the word

* “TV” and “telly”
In the testing data we have
* “television”

Originally they were all similar
(from pre-training word vectors)

What happens when we train
the word vectors?
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Loosing generalization by re-training word vectors

What happens when we train the word vectors?
* Those that are in the training data move around
* Words from pre-training that do NOT appear in training stay

Example:
In training data: “TV” and “telly”
In testing data only: “television”
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Loosing generalization by re-training word vectors

Take home message:

If you only have a small
training data set, don’t
train the word vectors.

If you have have a very
large dataset, it may

work better to train
word vectors to the task.
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Side note on word vectors notation

The word vector matrix L is also called lookup table
Word vectors = word embeddings = word representations (mostly)

Mostly from methods like word2vec or Glove

V]
o @ o ® O
1= 4Jl o e e ® o
o @ 0 ® O
o @ o ® O
aardvarka .. meta .. zebra

These are the word features x from now on

word

Conceptually you get a word’s vector by left multiplying a one-hot
vectorebyl: x=lecdx V-V x1

12



Window classification

Classifying single words is rarely done.

Interesting problems like ambiguity arise in context!

e Example: auto-antonyms:
* "To sanction" can mean "to permit" or "to punish.”
* "To seed" can mean "to place seeds" or "to remove seeds."

e Example: ambiguous named entities:
* Paris = Paris Hilton vs Paris, France
* Hathaway = Berkshire Hathaway, Anne Hathaway
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Window classification

e |dea: Instead of classifying a single word, just classify a word
together with its context window of neighboring words.

e For example named entity recognition into 4 classes:
e Person, location, organization, none

e Many possibilities exist for classifying one word in context, e.g.
averaging all the words in a window but that looses position
information
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Window classification

e Most commonly used technique to classify a word in a window

e Train classifier by assigning a label to a center word and
concatenating all word vectors surrounding it.

e Example: Classify Paris in the context of this sentence with
window length 2:

museums  in Paris are amazing
0000 0000 0000 0000 00O0O
Xwindow = [ Xmuseums Xin XParis Xare Xamazing]
* Resulting vector X, 4o =|X € R>® |, @ column vector!
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Simplest window classifer: Softmax

e With x = x,,,4,,, W€ Can use the same softmax classifier as before
. exp(W,.x)
= predicted model Zczl exXp WCCIL‘)

output probability
e With cross entropy error as before:

same
N
1 el
J(@):—Z—log< = )
N 1=1 Eczl efc

e But how do you update the word vectors?

Lecture 1, Slide 16 Richard Socher 4/8/15



Updating concatenated word vectors

* Short answer: Just take derivatives as before

e Long answer: Let’s go over the steps together (you’ll have to fill
in the details in PSet 1!)

e Define:
* { : softmax probability output vector (see previous slide)

* {:target probability distribution (all 0’s except at ground
truth index of class y, where it’s 1)

o f=WzeRY andf_=c'th element of the f vector

e Hard, the first time, hence some tips now :)
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Updating concatenated word vectors

* Tip 1: Carefully define your variables and  f = f(z) = Wz € R®
keep track of their dimensionality! gt W e RCx5d

* Tip 2: Know thy chain rule and don’t forget in which variables
other variables are being used:

5 C
B log SOfthLZC(fy(x» — Z

_ Olog softmaz(fy(x)) 0Ofc(x)
Ofe Ox

c=1

* Tip 3: For the softmax part of the derivative: First take the
derivative wrt f_ when c=y (the correct class), then take
derivative wrt f_when c= y (all the incorrect classes)
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Updating concatenated word vectors

one element of f, try to see if you can
create a gradient in the end that includes
all partial derivatives:

* Tip 4: When you take derivative wrt yot
f=fle)=WzeRC

0 R
a7 log softmax(f,) = yy —1

| Yo
* Tip 5: To later not go insane, think of your results in terms of
vector operations and define new, single index-able vectors:

6% —log softmazx(fy) =y —t] =9
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Updating concatenated word vectors

first use explicit sums and look at

* Tip 5: When you start with the chain rule, Uy ¢
f
partial derivatives of e.g. x; or W;

0log softmax(f,(x)) afc
> - 57 . Zaw

* Tip 6: Toclean it up for even more complex functions later:
Know dimensionality of variables &simplify into matrix notation

J T
%—logpy\x ZcSW =W

 Tip 7: Write this out in full sums if it’s not clear!
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Updating concatenated word vectors

first use explicit sums and look at

* Tip 5: When you start with the chain rule, Uy ¢
f
partial derivatives of e.g. x; or W;

0log softmax(f,(x)) afc
> - 57 . Zaw

* Tip 6: Toclean it up for even more complex functions later:
Know dimensionality of variables &simplify into matrix notation

J T
%—logpy\x ZcSW =W

 Tip 7: Write this out in full sums if it’s not clear!
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Updating concatenated word vectors

 What is the dimensionality of

(%3 —log p(y|z) = 25 W.. =W1s
c=1

e Xis the entire window of 5 d-dimensional word vectors, so the
derivative wrt to x has to have the same dimensionality:

VeJ =W e R
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Updating concatenated word vectors

 The gradient that arrives at and updates the word vectors can
simply be split up for each word vector:

o Let VoJ = WP = Spindow

*  Withx =[ x Xio Xparis Xare X

window museums in are amazing ]

e We have 5 7

wmuseums

8

n

5window — TParis

xare

14444

Lamazing
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Updating concatenated word vectors

* This will push word vectors into areas such they will be helpful
in determining named entities.

* For example, the model can learn that seeing x., as the word
just before the center word is indicative for the center word to
be a location
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What’s missing for training the window model?

 The gradient of J wrt the softmax weights W!

* Similar steps, write down partial wrt W; first!

e Then we have full

Vw,

Vw.,

Ved(0) = | o

Laardvark

V

- Lzebra
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A note on matrix implementations

26

There are two expensive operations in the softmax:
The matrix multiplication f = W x and the exp

A for loop is never as efficient when you implement it
compared vs when you use a larger matrix
multiplication that does the same mathematical
operation!

Example code =

Richard Socher 4/8/15



A note on matrix implementations

* Looping over word vectors instead of concatenating
them all into one large matrix and then multiplying
the softmax weights with that matrix

from numpy import random

N = 500 # number of windows to classify
d = 300 # dimensionality of each window
C = 5 # number of classes

W = random.rand(C,d)

wordvectors list = [random.rand(d,l) for i in range(N)]
wordvectors one matrix = random.rand(d,N)

$timeit [W.dot(wordvectors list[i]) for i in range(N)]
$timeit W.dot(wordvectors one matrix)

* 1000 loops, best of 3: 639 us per loop
10000 loops, best of 3: 53.8 us per loop
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A note on matrix implementations

28

from numpy import random
N = 500 # number of windows to classify

d = 300 # dimensionality of each window
C = 5 # number of classes

W = random.rand(C,d)
wordvectors list = [random.rand(d,l) for i in range(N)]

wordvectors one matrix = random.rand(d,N)

$timeit [W.dot(wordvectors list[i]) for i in range(N)]
ttimeit W.dot(wordvectors one matrix)

Result of faster method is a C x N matrix:

*  Each column is an f(x) in our notation (unnormalized class scores)
Matrices are awesome!

You should speed test your code a lot too
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Softmax (= logistic regression) is not very powerful

e Softmax only gives linear decision boundaries in the
original space.

* With little data that can be a good regularizer

 With more data it is very limiting!
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Softmax (= logistic regression) is not very powerful

e Softmax only linear decision boundaries

- Lame when problem
is complex

Wouldn’t it be cool to
get these correct?
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Neural Nets for the Win!

* Neural networks can learn much more complex
functions and nonlinear decision boundaries!
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32

From logistic regression to neural nets



Demystifying neural networks

Neural networks come with A single neuron
their own terminological A computational unit with n (3) inputs
baggage and 1 output

and parameters W, b
... just like SVMs

But if you understand how
softmax models work /

Then you already understand the
operation of a basic neural Inputs Activation  Output
network neuron! function

Bias unit corresponds to intercept term
33



A neuron is essentially a binary logistic regression unit

b: We can have an “always on”

h (X) = f(wa + b) «——— feature, which gives a class prior,
w,b - -
or separate it out, as a bias term
1

f(z)=1 A=

+e°

X4
x | n |
2 6 -4 -2 0 2 4 6
> h,(x)
X3
+1 w, b are the parameters of this neuron

i.e., this logistic regression model
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A neural network
= running several logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!
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A neural network
= running several logistic regressions at the same time

... which we can feed into another logistic regression function

It is the loss function
that will direct what
the intermediate
hidden variables should

m:) be, so as to do a good
job at predicting the
targets for the next
layer, etc.

Layer L,

36



A neural network
= running several logistic regressions at the same time

Before we know it, we have a multilayer neural network....

37



Matrix notation for a layer

We have
a, = f(W,x, + Wiox, + Wisx; + b))
a, = f (W x, + Wyx, + Wysx; + b,)
etlc.

In matrix notation

z=Wx+b
a=f(z)

where fis applied element-wise:

S z,25,23D) =1/(2,), f(2,), f (23)]

38
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Non-linearities (f): Why they’re needed

39

Example: function approximation,
e.g., regression or classification

e Without non-linearities, deep neural
networks can’t do anything more than a

linear transform

« Extra layers could just be compiled down

into a single linear transform:
W, W, x = Wx

* With more layers, they can approximate

more complex functions!

(]
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A more powerful window classifier
e Revisiting

e X =[ x X; Xparis X X

window museums in are amazing ]
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A Single Layer Neural Network

 Asingle layer is a combination of a linear layer
and a nonlinearity: z = Wx+5b

a = f(z)
e The neural activations a can then
be used to compute some function

* For instance, a softmax probability or an
unnormalized score or a we care about:

score(r) = U'a€eR

41



Summary: Feed-forward Computation

Computing a window’s score with a 3-layer neural
net: s = score(museums in Paris are amazing )

g — UTf(WCU—l—b) = R20X1,W c RSXZO,U c RSXI

s = Ula T
a = f(z) o000 0000
z = Wx+b

X =[ x X; Xparis X X

window museums in are amazing ]

42



Next lecture:

Training a window-based neural network.

Taking more deeper derivatives = Backprop

Then we have all the basic tools in place to learn about
more complex models :)
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Overview Today:

 Project Ideas
e From one to multi layer neural network!

e Max-Margin loss and backprop
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Class Project

e Most important (40%) and lasting result of the class
e PSet 3 a little easier to have more time

Start early and clearly define your task and dataset

Project types:
1. Apply existing neural network model to a new task
2. Come up with a new neural network model
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Class Project: Apply Existing NNets to Tasks

1. Define Task:
e Example: Summarization

2. Define Dataset
1. Search for academic datasets

e They already have baselines
e E.g.: Document Understanding Conference (DUC)

2. Define your own (harder, need more new baselines)

e |fyou’re a graduate student: connect to your research
e  Summarization, Wikipedia: Intro paragraph and rest of large article
e Becreative: Twitter, Blogs, News
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Class Project: Apply Existing NNets to Tasks

3. Define your metric
* Search online for well established metrics on this task

* Summarization: Rouge (Recall-Oriented Understudy for
Gisting Evaluation) which defines n-gram overlap to human
summaries

4. Split your dataset!
* Train/Dev/Test
e Academic dataset often come pre-split
 Don’t look at the test split until ~1 week before deadline!
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Class Project: Apply Existing NNets to Tasks

5. Establish a baseline

* Implement the simplest model (often logistic regression on
unigrams and bigrams) first

*  Compute metrics on train AND dev
* Analyze errors

* If metrics are amazing and no errors:
done, problem was too easy, restart :)

6. Implement existing neural net model
e Compute metric on train and dev
* Analyze output and errors
e Minimum bar for this class
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Class Project: Apply Existing NNets to Tasks

7. Always be close to your data!
* Visualize the dataset
* Collect summary statistics
* Look at errors

* Analyze how different hyperparameters affect performance

8. Try out different model variants
 Soon you will have more options

e  Word vector averaging model (neural bag of words)
e  Fixed window neural model

e Recurrent neural network

e  Recursive neural network

e  Convolutional neural network
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Class Project: A New Model -- Advanced Option

e Do all other steps first (Start early!)
e Gain intuition of why existing models are flawed

e Talk to other researchers, come to my office hours a lot

e |Implement new models and iterate quickly over ideas

e Set up efficient experimental framework

e Build simpler new models first

e Example Summarization:
* Average word vectors per paragraph, then greedy search
* Implement language model or autoencoder (introduced later)
e Stretch goal for potential paper: Generate summary!
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Project Ideas

e Summarization
e NER, like PSet 2 but with larger data

Natural Language Processing (almost) from Scratch, Ronan Collobert, Jason Weston, Leon Bottou, Michael
Karlen, Koray Kavukcuoglu, Pavel Kuksa,

e Simple question answering,

, Mohit lyyer, Jordan Boyd-Graber,
Leonardo Claudino, Richard Socher and Hal Daumé Il (EMNLP 2014)

* Image to text mapping or generation,

, Richard Socher, Andrej
Karpathy, Quoc V. Le, Christopher D. Manning, Andrew Y. Ng. (TACL 2014)
or

Deep Visual-Semantic Alignments for Generating Image Descriptions, Andrej Karpathy, Li Fei-Fei

e Entity level sentiment
e Use DL to solve an NLP challenge on kaggle,

Develop a scoring algorithm for student-written short-answer responses,
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Default project: sentiment classification

e Sentiment on movie reviews: hitp://nlp.stanford.edu/sentiment/

e Lots of deep learning baselines and methods have been tried
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A more powerful window classifier
e Reuvisiting
¢ X

=[ x X; Xparis X X

window museums in are amazing ]

e Assume we want to classify whether the center word is a
location or not
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A Single Layer Neural Network

 Asingle layer is a combination of a linear layer
and a nonlinearity: z = Wx+5b

a = f(z)
e The neural activations a can then
be used to compute some function

e For instance, an unnormalized score or a
softmax probability we care about:

score(r) = U'a€eR
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Summary: Feed-forward Computation

Computing a window’s score with a 3-layer neural
net: s = score(museums in Paris are amazing )

g — UTf(WCU—l—b) = R20X1,W c RSXZO,U c RSXI

s = Ula T
a = f(z) o000 0000
z = Wx+b

X =[ x X; Xparis X X

window museums in are amazing ]
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Main intuition for extra layer

The layer learns non-linear
interactions between the

input word vectors. T
0000 0000
Example: 0000 0000 0000 0000 0000

only if “museums” is  Xuuow =[ Xnweums Xn  Xpars  Xare  Xamazng]
first vector should

it matter that “in” is

in the second position
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Summary: Feed-forward Computation

e s =score(museums in Paris are amazing)
e s_=score(Not all museums in Paris)
e |dea for training objective: make score of true window

larger and corrupt window’s score lower (until they’re
good enough): minimize

J =max(0,1 — s + s.)

e This is continuous, can perform SGD
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Max-margin Objective function

* Objective for a single window:

J = max(0,1 — s + s.)

e Each window with a location at its center should have a
score +1 higher than any window without a location at
Its center

° xxx |€< 1 2| ooo

e For full objective function: Sum over all training
windows
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Training with Backpropagation

s=U'f(Wz +b)

J = max(0,1 — s+ s.) 5o = UT f(Wae +b)

Assuming cost Jis > 0,

compute the derivatives of s and s wrt all the
involved variables: U, W, b, x

0s 0
au —au’ ¢ ey~
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Training with Backpropagation

* Let’s consider the derivative of a single weight W,

s 0 .o 0 _.p -
8W_8WU a—aWU f(z)—aWU f(Wz +0)

* This only appears inside g,

* For example: W,; is only
used to compute a,
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Training with Backpropagation
ﬁ — ﬂUT — ﬂUTf( ) = iUTf(W + b)
ow —ow " aw VT aw g

Derivative of weight W/
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Training with Backpropagation

Derivative of single weight W;;: = = wiwis =3 wie; < b

0 3W2x+bz a; = f(2)

U——a; = Uf'(z
oW, I =50

0
= Uif/(zi)é?W-- ZWzkiﬁk
’L] k

= Uif'(z)x;
N——
Local error Local input
signal signal

where f'(2) = f(2)(1 — f(2)) for logistic f
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Training with Backpropagation

* From single weight W to full W:

ds 2
= Uif'(2) @, l
oW, fi(zi) z; X
— (57, L %

e We want all combinations of
i=1,2andj=1,2,32>7
e Solution: Outer product:

where § ¢ R2x1is the

“responsibility” or error message
coming from each activation a

0J

T
P = Ox

20
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Training with Backpropagation

e For biases b, we get: = Wt =S Wi b
a; — f(z’b)
0
Uz'a—biajz
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Training with Backpropagation

That’s almost backpropagation

It’s simply taking derivatives and using the chain rule!

Remaining trick: we can re-use derivatives computed for
higher layers in computing derivatives for lower layers!

Example: last derivatives of model, the word vectors in x

22



Training with Backpropagation

* Take derivative of score with ~ 9s 22: ds 0Oa;
respect to single element of  9Jz; — da; Ox;
word vector T a Ha.
e Now, we cannot just take B ; da; Ox;
into consideration one g, 5 9 (Wez+b
because each x; is connected = Z U; f(Wez +b)
J aCEj
to all the neurons above and i=1
O oW;.
hence x; influences the _ E:l]f Wqu+b) T
overall score through all of Ox

these, hence:

= Z 5; Wi
1=1

—Wts

53 Re-used part of previous derivative



Training with Backpropagation

e With 5—5 = W,?(S,What is the full gradient? -2
L j
0s T
Z2 5
Ox v

 Observations: The error message o0 that arrives at a hidden
layer has the same dimensionality as that hidden layer
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Putting all gradients together:

e Remember: Full objective function for each window was:

s=U'f(Wx + b)

J =max(0,1 — s + s.) o = UT f(Wio 1 b)

e For example: gradient for U:

O 11—t se> 0} (<f(Wa 4+ b) + f(Wae + D))
0s

— =111 - C — c
50 {1—s4+5s.>0}(—a+ac)
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Two layer neural nets and full backprop

e Let’s look at a 2 layer neural network
e Same window definition for x

e Same scoring function

e 2 hidden layers

S
D = W p®) v T
ORI (Z(l)) 0000/\0000 al?
w)
22 = WM 4 p3) 0000 000000 3
a? = f (Z(Q)) Wb
s = UTa® 0000 0000 0000 0000 0000 | X
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Two layer neural nets and full backprop

e Fully written out as one function: T
s = UTf (W(2)f (W(l)x - b(l)) - b(Q)) ee00 0000 :?
= UTq® w(2)
= Ulf (W(2)a(1) 4+ b(2)> 0000 000000 1
w)

e Same derivation as before for W2 (now sitting on a'1))

ds 0s (2) (1)
= U;f'(z)x; = Uf' (27 )a;
ow, — Ll pe = (=)
= 0; X j _ 5@(2) aél)
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Two layer neural nets and full backprop

SO Wy 4™
oD — f(zm)

e Same derivation as before for W(2):

Os (@Y D)
8Wz(32) = E]zf (Zq, )Jaj Z(2) _ W(Q)a(l)_l_b(g)
- (2) _ (2)
N o = 1 (=)
. i ion: 25 _ s@,mF
In matrix notation: ETC) —6%q

where 62 =yUo f (z(2>) and o is the element-wise product
also called Hadamard product

0s

e Last missing piece for understanding general backprop: TEey

Lecture 1, Slide 28 Richard Socher 4/13/15



Two layer neural nets and full backprop

1 o 1 1
* Last missing piece: - 20 = wlg 4 pt)
2(2) — W(2)a(1) _I_ b(2)
 What’s the last layer’s error message §1)? a? = f (z(2>>

e Similar derivation to single layer model

T
e Main difference, we have both W,g.l) 5@ and f'(2"V) because
unlike x, W) is inside another function = chain rule
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Two layer neural nets and full backprop

. _ w D@ o )
 Difference for 0 : we have both W _; and J (#"7) because
unlike x, W) is inside another function = chain rule

I ((6(7’”))ng7’”—1)> f,(Zi(nl_l))a/(-nl_Q)

J

Si+1
— (Z W(?’Ll 1)5(’)’”) ) f»/(zi(nl—l)) agnl—Z)

\ - 4

~~

5§nl—1)a§nl—2)

e Putting it all together: 1) — (W(1>T5(2)) o f (z<1>)
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Two layer neural nets and full backprop

.. : 0s W — w®gpp®
 Last missing piece: = W T : .
oW (1) oD = f(zm)

L@ = @0 4@
* In general for any matrix W{) at internal @) f(Z@))
layer [ and any error with regularization Eg . T,®

all backprop in standard multilayer
neural networks boils down to 2 equations:

0
ow )

s — ((W(l))T5(l+1)) o f'(z0), Er = 6D (aT L aw®

 Top and bottom layers have simpler ¢
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32

Backpropagation (High Level)



Back-Prop

e Compute gradient of example-wise loss wrt
parameters

* Simply applying the derivative chain rule wisely

Oz __ Oz Oy

e=fly) y=9) 5 =573

* If computing the loss(example, parameters) is O(n)
computation, then so is computing the gradient
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Sim FLe. Chain Rule

Jz __ 0z 9y
or Oy Ox
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Mu.i.&i‘.pte. Palbths Chain Rule
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Multiple Paths Chain Rule - General

Yn

0z
%—Z

1=1

36
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Chain Rule in Flow G'rapk

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

{y1, Y2, ... yn}=successors of T
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Back—-‘?mp i Mutki‘.-Laje.r Net

NLL = —log P(Y = y|x)
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Back-?'mp i Greneral Flow Grrapk

Single scalar output <

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{y1, Y2, - .. yn} = successors of I

0z 0vy;
Z oy; Ox
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Automatic Differentiation

40

* The gradient computation can
be automatically inferred from
the symbolic expression of the
fprop.

* Each node type needs to know
how to compute its output and
how to compute the gradient
wrt its inputs given the
gradient wrt its output.

* Easy and fast prototyping



Summary

* Congrats!
* You survived the hardest part of this class.

e Everything else from now on is just more matrix
multiplications and backprop :)

* Next up:
* Tips and Tricks

* Recurrent Neural Networks
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