
How$do$we$represent$the$meaning$of$a$word?$

4/1/15%Richard%Socher%1%

Defini3on:%Meaning%(Webster%dic3onary)%

•  the%idea%that%is%represented%by%a%word,%phrase,%etc.%

•  the%idea%that%a%person%wants%to%express%by%using%
words,%signs,%etc.%

•  the%idea%that%is%expressed%in%a%work%of%wri3ng,%art,%etc.%



How$to$represent$meaning$in$a$computer?$

4/1/15%Richard%Socher%2%

Common%answer:%Use%a%taxonomy%like%WordNet%that%has%
hypernyms%(isKa)%rela3onships%%%%%%%%and%

% % % % %%%%%%synonym%sets%(good):%

[Synset('procyonid.n.01'),%%
Synset('carnivore.n.01'),%%
Synset('placental.n.01'),%%
Synset('mammal.n.01'),%%
Synset('vertebrate.n.01'),%%
Synset('chordate.n.01'),%%
Synset('animal.n.01'),%%
Synset('organism.n.01'),%%
Synset('living_thing.n.01'),%%
Synset('whole.n.02'),%%
Synset('object.n.01'),%%
Synset('physical_en3ty.n.01'),%%
Synset('en3ty.n.01')]%

S:%(adj)%full,%good%%
S:%(adj)%es3mable,%good,%honorable,%respectable%%
S:%(adj)%beneficial,%good%%
S:%(adj)%good,%just,%upright%%
S:%(adj)%adept,%expert,%good,%prac3ced,%%
proficient,%skillful%
S:%(adj)%dear,%good,%near%%
S:%(adj)%good,%right,%ripe%
…%
S:%(adv)%well,%good%%
S:%(adv)%thoroughly,%soundly,%good%%
S:%(n)%good,%goodness%%
S:%(n)%commodity,%trade%good,%good%%



Problems$with$this$discrete$representa9on$

4/1/15%Richard%Socher%3%

•  Great%as%resource%but%missing%nuances,%e.g.%
synonyms:%%
adept,%expert,%good,%prac3ced,%proficient,%skillful?%

•  Missing%new%words%(impossible%to%keep%up%to%date):%
wicked,%badass,%niXy,%crack,%ace,%wizard,%genius,%ninjia%

•  Subjec3ve%

•  Requires%human%labor%to%create%and%adapt%

•  Hard%to%compute%accurate%word%similarity%!%



Problems$with$this$discrete$representa9on$

The%vast%majority%of%ruleKbased%and%sta3s3cal%NLP%work%regards%
words%as%atomic%symbols:%hotel, conference, walk 
%

In%vector%space%terms,%this%is%a%vector%with%one%1%and%a%lot%of%zeroes%

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] 
Dimensionality:%20K%(speech)%–%50K%(PTB)%–%500K%(big%vocab)%–%13M%(Google%1T)%

We%call%this%a%“oneKhot”%representa3on.%Its%problem:%

  motel [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]  AND 
  hotel  [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]  =  0%
4%



Distribu9onal$similarity$based$representa9ons$

You%can%get%a%lot%of%value%by%represen3ng%a%word%by%
means%of%its%neighbors%

“You%shall%know%a%word%by%the%company%it%keeps”%

(J.%R.%Firth%1957:%11)%

One%of%the%most%successful%ideas%of%modern%sta3s3cal%NLP%

 

government debt problems turning into banking crises as has happened in 

         saying that Europe needs unified banking regulation to replace the hodgepodge 

"%These%words%will%represent%banking'!%

%5%



How$to$make$neighbors$represent$words?$

4/1/15%Richard%Socher%6%

Answer:%With%a%cooccurrence%matrix%X%

•  2%op3ons:%full%document%vs%windows%

•  Word%K%document%cooccurrence%matrix%will%give%
general%topics%(all%sports%terms%will%have%similar%
entries)%leading%to%“Latent%Seman3c%Analysis”%

•  Window%allows%us%to%capture%both%syntac3c%(POS)%and%
seman3c%informa3on%!%%



Window$based$cooccurence$matrix$

4/1/15%Richard%Socher%7%

•  Window%length%1%(more%common:%5%K%10)%

•  Symmetric%(irrelevant%whether%leX%or%right%context)%

•  Example%corpus:%%

•  I%like%deep%learning.%%

•  I%like%NLP.%%

•  I%enjoy%flying.%



Window$based$cooccurence$matrix$

4/1/15%Richard%Socher%8%

•  Example%corpus:%%

•  I%like%deep%learning.%%

•  I%like%NLP.%%

•  I%enjoy%flying.%

counts$ I$ like$ enjoy$ deep$ learning$ NLP$ flying$ .$

I$ 0% 2% 1% 0% 0% 0% 0% 0%

like$ 2% 0% 0% 1% 0% 1% 0% 0%

enjoy$ 1% 0% 0% 0% 0% 0% 1% 0%

deep$ 0% 1% 0% 0% 1% 0% 0% 0%

learning$ 0% 0% 0% 1% 0% 0% 0% 1%

NLP$ 0% 1% 0% 0% 0% 0% 0% 1%

flying$ 0% 0% 1% 0% 0% 0% 0% 1%

.$ 0% 0% 0% 0% 1% 1% 1% 0%



Problems$with$simple$cooccurrence$vectors$

4/1/15%Richard%Socher%9%

Increase%in%size%with%vocabulary%

%

Very%high%dimensional:%require%a%lot%of%storage%

%

Subsequent%classifica3on%models%have%sparsity%issues%

%

!%Models%are%less%robust%



Solu9on:$Low$dimensional$vectors$

4/1/15%Richard%Socher%10%

•  Idea:%store%“most”%of%the%important%informa3on%in%a%
fixed,%small%number%of%dimensions:%a%dense%vector%

•  Usually%around%25%–%1000%dimensions%

•  How%to%reduce%the%dimensionality?%



Method$1:$Dimensionality$Reduc9on$on$X$

4/1/15%Richard%Socher%11%

Singular%Value%Decomposi3on%of%cooccurrence%matrix%X.%%

%

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence
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Figure 1: The singular value decomposition of matrix X .
X̂ is the best rank k approximation to X , in terms of least
squares.

tropy of the document distribution of row vector a. Words
that are evenly distributed over documents will have high
entropy and thus a low weighting, reflecting the intuition
that such words are less interesting.
The critical step of the LSA algorithm is to compute

the singular value decomposition (SVD) of the normal-
ized co-occurrencematrix. An SVD is similar to an eigen-
value decomposition, but can be computed for rectangu-
lar matrices. As shown in Figure 1, the SVD is a prod-
uct of three matrices, the first, U , containing orthonormal
columns known as the left singular vectors, and the last,
VT containing orthonormal rows known as the right sin-
gular vectors, while the middle, S, is a diagonal matrix
containing the singular values. The left and right singu-
lar vectors are akin to eigenvectors and the singular values
are akin to eigenvalues and rate the importance of the vec-
tors.1 The singular vectors reflect principal components,
or axes of greatest variance in the data.
If the matrices comprising the SVD are permuted such

that the singular values are in decreasing order, they can
be truncated to a much lower rank, k. It can be shown that
the product of these reducedmatrices is the best rank k ap-
proximation, in terms of sum squared error, to the original
matrix X . The vector representing word a in the reduced-
rank space is Ûa, the ath row of Û , while the vector repre-
senting document b is V̂b, the bth row of V̂ . If a new word,
c, or a new document, d, is added after the computation
of the SVD, their reduced-dimensionality vectors can be
computed as follows:

Ûc = XcV̂ Ŝ−1

V̂d = XTd ÛŜ
−1

The similarity of two words or two documents in LSA
is usually computed using the cosine of their reduced-
dimensionality vectors, the formula for which is given in

1In fact, if the matrix is symmetric and positive semidefinite, the left
and right singular vectors will be identical and equivalent to its eigen-
vectors and the singular values will be its eigenvalues.

Table 3. It is unclear whether the vectors are first scaled
by the singular values, S, before computing the cosine,
as implied in Deerwester, Dumais, Furnas, Landauer, and
Harshman (1990).
Computing the SVD itself is not trivial. For a dense

matrix with dimensions n < m, the SVD computation
requires time proportional to n2m. This is impractical
for matrices with more than a few thousand dimensions.
However, LSA co-occurrence matrices tend to be quite
sparse and the SVD computation is much faster for sparse
matrices, allowing the model to handle hundreds of thou-
sands of words and documents. The LSA similarity rat-
ings tested here were generated using the term-to-term
pairwise comparison interface available on the LSA web
site (http://lsa.colorado.edu).2 The model was trained on
the TouchstoneApplied Science Associates (TASA) “gen-
eral reading up to first year college” data set, with the top
300 dimensions retained.

2.3 WordNet-based models

WordNet is a network consisting of synonym sets, repre-
senting lexical concepts, linked together with various rela-
tions, such as synonym, hypernym, and hyponym (Miller
et al., 1990). There have been several efforts to base a
measure of semantic similarity on the WordNet database,
some of which are reviewed in Budanitsky and Hirst
(2001), Patwardhan, Banerjee, and Pedersen (2003), and
Jarmasz and Szpakowicz (2003). Here we briefly sum-
marize each of these methods. The similarity ratings re-
ported in Section 3 were generated using version 0.06 of
Ted Pedersen’s WordNet::Similarity module, along with
WordNet version 2.0.
The WordNet methods have an advantage over HAL,

LSA, and COALS in that they distinguish between mul-
tiple word senses. This raises the question, when judg-
ing the similarity of a pair of polysemous words, of
which senses to use in the comparison. When given the
pair thick–stout, most human subjects will judge them to
be quite similar because stout means strong and sturdy,
which may imply that something is thick. But the pair
lager–stout is also likely to be considered similar because
they denote types of beer. In this case, the rater may not
even be consciously aware of the adjective sense of stout.
Consider also hammer–saw versus smelled–saw. Whether
or not we are aware of it, we tend to rate the similarity of
a polysemous word pair on the basis of the senses that are
most similar to one another. Therefore, the same was done
with the WordNet models.

2The document-to-document LSAmode was also tested but the term-
to-term method proved slightly better.

4
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Figure 1: The singular value decomposition of matrix X .
X̂ is the best rank k approximation to X , in terms of least
squares.

tropy of the document distribution of row vector a. Words
that are evenly distributed over documents will have high
entropy and thus a low weighting, reflecting the intuition
that such words are less interesting.
The critical step of the LSA algorithm is to compute

the singular value decomposition (SVD) of the normal-
ized co-occurrencematrix. An SVD is similar to an eigen-
value decomposition, but can be computed for rectangu-
lar matrices. As shown in Figure 1, the SVD is a prod-
uct of three matrices, the first, U , containing orthonormal
columns known as the left singular vectors, and the last,
VT containing orthonormal rows known as the right sin-
gular vectors, while the middle, S, is a diagonal matrix
containing the singular values. The left and right singu-
lar vectors are akin to eigenvectors and the singular values
are akin to eigenvalues and rate the importance of the vec-
tors.1 The singular vectors reflect principal components,
or axes of greatest variance in the data.
If the matrices comprising the SVD are permuted such

that the singular values are in decreasing order, they can
be truncated to a much lower rank, k. It can be shown that
the product of these reducedmatrices is the best rank k ap-
proximation, in terms of sum squared error, to the original
matrix X . The vector representing word a in the reduced-
rank space is Ûa, the ath row of Û , while the vector repre-
senting document b is V̂b, the bth row of V̂ . If a new word,
c, or a new document, d, is added after the computation
of the SVD, their reduced-dimensionality vectors can be
computed as follows:

Ûc = XcV̂ Ŝ−1

V̂d = XTd ÛŜ
−1

The similarity of two words or two documents in LSA
is usually computed using the cosine of their reduced-
dimensionality vectors, the formula for which is given in

1In fact, if the matrix is symmetric and positive semidefinite, the left
and right singular vectors will be identical and equivalent to its eigen-
vectors and the singular values will be its eigenvalues.

Table 3. It is unclear whether the vectors are first scaled
by the singular values, S, before computing the cosine,
as implied in Deerwester, Dumais, Furnas, Landauer, and
Harshman (1990).
Computing the SVD itself is not trivial. For a dense

matrix with dimensions n < m, the SVD computation
requires time proportional to n2m. This is impractical
for matrices with more than a few thousand dimensions.
However, LSA co-occurrence matrices tend to be quite
sparse and the SVD computation is much faster for sparse
matrices, allowing the model to handle hundreds of thou-
sands of words and documents. The LSA similarity rat-
ings tested here were generated using the term-to-term
pairwise comparison interface available on the LSA web
site (http://lsa.colorado.edu).2 The model was trained on
the TouchstoneApplied Science Associates (TASA) “gen-
eral reading up to first year college” data set, with the top
300 dimensions retained.

2.3 WordNet-based models

WordNet is a network consisting of synonym sets, repre-
senting lexical concepts, linked together with various rela-
tions, such as synonym, hypernym, and hyponym (Miller
et al., 1990). There have been several efforts to base a
measure of semantic similarity on the WordNet database,
some of which are reviewed in Budanitsky and Hirst
(2001), Patwardhan, Banerjee, and Pedersen (2003), and
Jarmasz and Szpakowicz (2003). Here we briefly sum-
marize each of these methods. The similarity ratings re-
ported in Section 3 were generated using version 0.06 of
Ted Pedersen’s WordNet::Similarity module, along with
WordNet version 2.0.
The WordNet methods have an advantage over HAL,

LSA, and COALS in that they distinguish between mul-
tiple word senses. This raises the question, when judg-
ing the similarity of a pair of polysemous words, of
which senses to use in the comparison. When given the
pair thick–stout, most human subjects will judge them to
be quite similar because stout means strong and sturdy,
which may imply that something is thick. But the pair
lager–stout is also likely to be considered similar because
they denote types of beer. In this case, the rater may not
even be consciously aware of the adjective sense of stout.
Consider also hammer–saw versus smelled–saw. Whether
or not we are aware of it, we tend to rate the similarity of
a polysemous word pair on the basis of the senses that are
most similar to one another. Therefore, the same was done
with the WordNet models.

2The document-to-document LSAmode was also tested but the term-
to-term method proved slightly better.
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Simple$SVD$word$vectors$in$Python$

4/1/15%Richard%Socher%12%

Corpus:%%
I%like%deep%learning.%I%like%NLP.%I%enjoy%flying.%
%



Simple$SVD$word$vectors$in$Python$

4/1/15%Richard%Socher%13%

Corpus:%I%like%deep%learning.%I%like%NLP.%I%enjoy%flying.%
Prin3ng%first%two%columns%of%U%corresponding%to%the%2%biggest%singular%values%



Word$meaning$is$defined$in$terms$of$vectors$

•  In%all%subsequent%models,%including%deep%learning%models,%a%
word%is%represented%as%a%dense%vector%

%
%

'

'

linguis,cs''=%

14%

0.286%
0.792%
−0.177%
−0.107%
0.109%
−0.542%
0.349%
0.271%



Hacks$to$X$

4/1/15%Richard%Socher%15%

•  Problem:%func3on%words%(the,%he,%has)%are%too%
frequent%!%syntax%has%too%much%impact.%Some%fixes:%%

•  min(X,t),%with%t~100%

•  Ignore%them%all%

•  Ramped%windows%that%count%closer%words%more%

•  Use%Pearson%correla3ons%instead%of%counts,%then%set%
nega3ve%values%to%0%

•  +++%



Interes9ng$seman9c$paMers$emerge$in$the$vectors$
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Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence
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Figure 8: Multidimensional scaling for three noun classes.
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Figure 9: Hierarchical clustering for three noun classes using distances based on vector correlations.
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An%Improved%Model%of%Seman3c%Similarity%Based%on%Lexical%CoKOccurrence%%
Rohde%et%al.%2005%
%



Interes9ng$seman9c$paMers$emerge$in$the$vectors$

4/1/15%Richard%Socher%17%

An%Improved%Model%of%Seman3c%Similarity%Based%on%Lexical%CoKOccurrence%%
Rohde%et%al.%2005%
%

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence
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Figure 10: Multidimensional scaling of three verb semantic classes.
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Interes9ng$seman9c$paMers$emerge$in$the$vectors$
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An%Improved%Model%of%Seman3c%Similarity%Based%on%Lexical%CoKOccurrence%%
Rohde%et%al.%2005%
%

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence
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Figure 13: Multidimensional scaling for nouns and their associated verbs.

Table 10
The 10 nearest neighbors and their percent correlation similarities for a set of nouns, under the COALS-14K model.

gun point mind monopoly cardboard lipstick leningrad feet
1) 46.4 handgun 32.4 points 33.5 minds 39.9 monopolies 47.4 plastic 42.9 shimmery 24.0 moscow 59.5 inches
2) 41.1 firearms 29.2 argument 24.9 consciousness 27.8 monopolistic 37.2 foam 40.8 eyeliner 22.7 sevastopol 57.7 foot
3) 41.0 firearm 25.4 question 23.2 thoughts 26.5 corporations 36.7 plywood 38.8 clinique 22.7 petersburg 52.0 metres
4) 35.3 handguns 22.3 arguments 22.4 senses 25.0 government 35.6 paper 38.4 mascara 20.7 novosibirsk 45.7 legs
5) 35.0 guns 21.5 idea 22.2 subconscious 23.2 ownership 34.8 corrugated 37.2 revlon 20.3 russia 45.4 centimeters
6) 32.7 pistol 20.1 assertion 20.8 thinking 22.2 property 32.3 boxes 35.4 lipsticks 19.6 oblast 44.4 meters
7) 26.3 weapon 19.5 premise 20.6 perception 22.2 capitalism 31.3 wooden 35.3 gloss 19.5 minsk 40.2 inch
8) 24.4 rifles 19.3 moot 20.4 emotions 21.8 capitalist 31.0 glass 34.1 shimmer 19.2 stalingrad 38.4 shoulders
9) 24.2 shotgun 18.9 distinction 20.1 brain 21.6 authority 30.7 fabric 33.6 blush 19.1 ussr 37.8 knees
10) 23.6 weapons 18.7 statement 19.9 psyche 21.3 subsidies 30.5 aluminum 33.5 nars 19.0 soviet 36.9 toes

Table 11
The 10 nearest neighbors for a set of verbs, according to the COALS-14K model.

need buy play change send understand explain create
1) 50.4 want 53.5 buying 63.5 playing 56.9 changing 55.0 sending 56.3 comprehend 53.0 understand 58.2 creating
2) 50.2 needed 52.5 sell 55.5 played 55.3 changes 42.0 email 53.0 explain 46.3 describe 50.6 creates
3) 42.1 needing 49.1 bought 47.6 plays 48.9 changed 40.2 e-mail 49.5 understood 40.0 explaining 45.1 develop
4) 41.2 needs 41.8 purchase 37.2 players 32.2 adjust 39.8 unsubscribe 44.8 realize 39.8 comprehend 43.3 created
5) 41.1 can 40.3 purchased 35.4 player 30.2 affect 37.3 mail 40.9 grasp 39.7 explained 42.6 generate
6) 39.5 able 39.7 selling 33.8 game 29.5 modify 35.7 please 39.1 know 39.0 prove 37.8 build
7) 36.3 try 38.2 sells 32.3 games 28.3 different 33.3 subscribe 38.8 believe 38.2 clarify 36.4 maintain
8) 35.4 should 36.3 buys 29.0 listen 27.1 alter 33.1 receive 38.5 recognize 37.1 argue 36.4 produce
9) 35.3 do 34.0 sale 26.8 playable 25.6 shift 32.7 submit 38.0 misunderstand 37.0 refute 35.4 integrate
10) 34.7 necessary 31.5 cheap 25.0 beat 25.1 altering 31.5 address 37.9 understands 35.9 tell 35.2 implement

Table 12
The 10 nearest neighbors for a set of adjectives, according to the COALS-14K model.

high frightened red correct similar fast evil christian
1) 57.5 low 45.6 scared 53.7 blue 59.0 incorrect 44.9 similiar 43.1 faster 24.3 sinful 48.5 catholic
2) 51.9 higher 37.2 terrified 47.8 yellow 37.7 accurate 43.2 different 41.2 slow 23.4 wicked 48.1 protestant
3) 43.4 lower 33.7 confused 45.1 purple 37.5 proper 40.8 same 37.8 slower 23.2 vile 47.9 christians
4) 43.2 highest 33.3 frustrated 44.9 green 36.3 wrong 40.6 such 28.2 rapidly 22.5 demons 47.2 orthodox
5) 35.9 lowest 32.6 worried 43.2 white 34.1 precise 37.7 specific 27.3 quicker 22.3 satan 47.1 religious
6) 31.5 increases 32.4 embarrassed 42.8 black 32.9 exact 35.6 identical 26.8 quick 22.3 god 46.4 christianity
7) 30.7 increase 32.3 angry 36.8 colored 30.7 erroneous 34.6 these 25.9 speeds 22.3 sinister 43.8 fundamentalist
8) 29.2 increasing 31.6 afraid 35.6 orange 30.6 valid 34.4 unusual 25.8 quickly 22.0 immoral 43.5 jewish
9) 28.7 increased 30.4 upset 33.5 grey 30.6 inaccurate 34.1 certain 25.5 speed 21.5 hateful 43.2 evangelical
10) 28.3 lowering 30.3 annoyed 32.4 reddish 29.8 acceptable 32.7 various 24.3 easy 21.3 sadistic 41.2 mormon

24



Problems$with$SVD$
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Computa3onal%cost%scales%quadra3cally%%for%n%x%m%matrix:%

O(mn2)%flops%(when%n<m)%%

!%Bad%for%millions%of%words%or%documents%

%

Hard%to%incorporate%new%words%or%documents%

Different%learning%regime%than%other%DL%models%

%

%



Idea:$Directly$learn$lowNdimensional$word$vectors$

4/1/15%Richard%Socher%20%

•  Old%idea.%Relevant%for%this%lecture%&%deep%learning:%

•  Learning%representa3ons%by%backKpropaga3ng%errors.%
(Rumelhart%et%al.,%1986)%

•  A%neural%probabilis3c%language%model%(Bengio%et%al.,%2003)%%%

•  NLP%from%Scratch%(Collobert%&%Weston,%2008)%

•  A%recent%and%even%simpler%model:%%
word2vec%(Mikolov%et%al.%2013)%!%intro%now%

%



Main$Idea$of$word2vec$

4/1/15%Richard%Socher%21%

•  Instead%of%capturing%cooccurrence%counts%directly,%

•  Predict%surrounding%words%of%every%word%%

•  Both%are%quite%similar,%see%“Glove:'Global'Vectors'for'
Word'Representa,on”'by%Pennington%et%al.%(2014)%

•  Faster%and%can%easily%incorporate%a%new%sentence/
document%or%add%a%word%to%the%vocabulary%
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•  Predict%surrounding%words%in%a%window%of%length%c%of%
every%word.%

•  Objec3ve%func3on:%Maximize%the%log%probability%of%
any%context%word%given%the%current%center%word:%

•  %%
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Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the original Skip-gram model. We show that sub-
sampling of frequent words during training results in a significant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequent words. In addition, we present a simpli-
fied variant of Noise Contrastive Estimation (NCE) [4] for training the Skip-grammodel that results
in faster training and better vector representations for frequent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to represent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Globe” is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Globe”. Therefore, using vectors to repre-
sent the whole phrases makes the Skip-gram model considerably more expressive. Other techniques
that aim to represent meaning of sentences by composing the word vectors, such as the recursive
autoencoders [15], would also benefit from using phrase vectors instead of the word vectors.

The extension from word based to phrase based models is relatively simple. First we identify a large
number of phrases using a data-driven approach, and then we treat the phrases as individual tokens
during the training. To evaluate the quality of the phrase vectors, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrases. A typical analogy pair from our test set is
“Montreal”:“Montreal Canadiens”::“Toronto”:“TorontoMaple Leafs”. It is considered to have been
answered correctly if the nearest representation to vec(“Montreal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of the Skip-gram model. We found that simple
vector addition can often produce meaningful results. For example, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree of language understanding can be obtained by
using basic mathematical operations on the word vector representations.

2 The Skip-gram Model

The training objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. More formally, given a sequence of
training wordsw1, w2, w3, . . . , wT , the objective of the Skip-grammodel is to maximize the average
log probability

1

T

T
∑

t=1

∑

−c≤j≤c,j ̸=0

log p(wt+j |wt) (1)

where c is the size of the training context (which can be a function of the center word wt). Larger
c results in more training examples and thus can lead to a higher accuracy, at the expense of the

2
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•  Predict%surrounding%words%in%a%window%of%length%c%of%
every%word%

•  For%%%%%%%%%%%%%%%%%%%the%simplest%first%formula3on%is%%

•  where%v%and%vz%are%“input”%and%“output”%vector%
representa3ons%of%w%(so%every%word%has%two%vectors!)%

•  This%is%essen3ally%“dynamic”%logis3c%regression%

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI ) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)
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Cost/Objec9ve$func9ons$
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We%will%op3mize%(maximize%or%minimize)%%
our%objec3ve/cost%func3ons%
%
For%now:%minimize%!%gradient%descent%
%
Refresher%with%trivial%example:%(from%Wikipedia)%
Find%a%local%minimum%of%the%func3on%%
f(x)=x4−3x3+2,%with%deriva3ve%f'(x)=4x3−9x2.%%
%
%
%



Deriva9ons$of$gradient$
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•  Whiteboard%(see%video%if%you’re%not%in%class%;)%

•  Most%basic%Lego%piece,%speed%will%depend%on%
par3cipa3on%

•  Useful%basics:%

•  Chain%rule!%If%y%=%f(u)%and%u%=%g(x),%i.e.%y=f(g(x)),%then:%



Whiteboard!$
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Approxima9ons:$PSet$1$
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•  With%large%vocabularies%this%objec3ve%func3on%is%not%
scalable%and%would%train%too%slowly!%!%Why?%

•  Idea:%approximate%the%normaliza3on%or%%

•  Define%nega3ve%predic3on%that%only%samples%a%few%
words%that%do%not%appear%in%the%context%

•  Similar%to%focusing%on%mostly%posi3ve%correla3ons%

•  You%will%derive%and%implement%this%in%Pset%1!%



Linear$Rela9onships$in$word2vec$

These%representa3ons%are%very'good'at%encoding%dimensions%of%
similarity!%

•  Analogies%tes3ng%dimensions%of%similarity%can%be%solved%quite%
well%just%by%doing%vector%subtrac3on%in%the%embedding%space%

Syntac3cally%

•  xapple'−%xapples'≈%xcar'−%xcars'≈%xfamily'−%xfamilies''

•  Similarly%for%verb%and%adjec3ve%morphological%forms%

Seman3cally%(Semeval%2012%task%2)%

•  xshirt'−%xclothing'≈%xchair'−%xfurniture''
•  xking'−%xman'≈%xqueen'−%xwoman''

28%



Count$based$vs$direct$predic9on$
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LSA, HAL (Lund & Burgess), 
COALS (Rohde et al),  
Hellinger-PCA (Lebret & Collobert)%

• Fast training%

• Efficient usage of statistics%

• Primarily used to capture word 
similarity%

• Disproportionate importance 
given to small counts%

• NNLM, HLBL, RNN, Skip-
gram/CBOW, (Bengio et al; Collobert 
& Weston; Huang et al; Mnih & Hinton; 
Mikolov et al; Mnih & Kavukcuoglu)%

• Scales with corpus size%

•  Inefficient usage of statistics%

• Can capture complex patterns  
beyond word similarity %

• Generate improved performance  
on other tasks%



Combining$the$best$of$both$worlds:$GloVe$
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• Fast%training%

• Scalable%to%huge%corpora%

• Good%performance%even%with%small%corpus,%and%small%
vectors%

%



Glove$results$
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1.%frogs%
2.%toad%
3.%litoria%
4.%leptodactylidae%
5.%rana%
6.%lizard%
7.%eleutherodactylus%

litoria% leptodactylidae%

rana% eleutherodactylus%

Nearest%words%to%%
frog:%



king%

man%
woman%

Word%Analogies%

Test%for%linear%rela3onships,%examined%by%Mikolov%et%al.%(2014)%

a:b%::%c:?%

man%

woman%

[%0.20%0.20%]%

[%0.60%0.30%]%

king% [%0.30%0.70%]%

[%0.70%0.80%]%

K%

+%

+%

queen%

queen%

man:woman%::%king:?%

a:b%::%c:?%



Glove$Visualiza9ons$
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Glove$Visualiza9ons:$Company$N$CEO$
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Glove$Visualiza9ons:$Superla9ves$
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[%%%%%%%%%%%%]%

Word$embedding$matrix$

•  Ini3alize%most%word%vectors%of%future%models%with%our%“preK
trained”%embedding%matrix%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%|V|%
%

%L%%=%%%%%%%%% % %%%%%%%%%%%%%%… %%%%%%%%%%n%%
%

% %%%%aardvark%%%%a%%%%%%%%at%%%…%

•  Also%called%a%lookKup%table%
•  Conceptually%you%get%a%word’s%vector%by%leX%mul3plying%a%
oneKhot%vector%e%(of%length%|V|)%by%L:%%%%%x%=%Le'

36%



Advantages$of$low$dimensional$word$vectors$

37%37%

What%is%the%major%benefit%of%deep%learned%word%vectors?%

Ability%to%also%propagate%any$informa3on%into%them%
via%neural%networks%(next%lecture).%

%

S'
c1%%%%%%%%%%%c2%%%%%%%%%%%%c3%%%
%

x1' ''''''''x2%%%%%%%%%%%%%%%%x3'''''''''''%+1%
'

a1' ''''''''a2'
P(c | d,λ) = eλ

T f (c,d )

eλ
T f ( !c ,d )

!c∑



Advantages$of$low$dimensional$word$vectors$

38%

•  Word%vectors%will%form%the%basis%for%all%subsequent%
lectures.%

•  All%our%seman3c%representa3ons%will%be%vectors!%

•  We%can%compute%composi3onal%representa3ons%for%
longer%phrases%or%sentences%with%them%and%solve%lots%
of%different%tasks.%!%Next%lecture!%



Refresher:(The(simple(word2vec(model(

•  Main%cost%func,on%J:%

•  With%probabili,es%defined%as:%

•  We%derived%the%gradient%for%the%internal%vectors%%
(vc%on%the%board)%

4/6/15%Richard%Socher%Lecture%1,%Slide%1%
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Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the original Skip-gram model. We show that sub-
sampling of frequent words during training results in a significant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequent words. In addition, we present a simpli-
fied variant of Noise Contrastive Estimation (NCE) [4] for training the Skip-grammodel that results
in faster training and better vector representations for frequent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to represent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Globe” is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Globe”. Therefore, using vectors to repre-
sent the whole phrases makes the Skip-gram model considerably more expressive. Other techniques
that aim to represent meaning of sentences by composing the word vectors, such as the recursive
autoencoders [15], would also benefit from using phrase vectors instead of the word vectors.

The extension from word based to phrase based models is relatively simple. First we identify a large
number of phrases using a data-driven approach, and then we treat the phrases as individual tokens
during the training. To evaluate the quality of the phrase vectors, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrases. A typical analogy pair from our test set is
“Montreal”:“Montreal Canadiens”::“Toronto”:“TorontoMaple Leafs”. It is considered to have been
answered correctly if the nearest representation to vec(“Montreal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of the Skip-gram model. We found that simple
vector addition can often produce meaningful results. For example, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree of language understanding can be obtained by
using basic mathematical operations on the word vector representations.

2 The Skip-gram Model

The training objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. More formally, given a sequence of
training wordsw1, w2, w3, . . . , wT , the objective of the Skip-grammodel is to maximize the average
log probability

1

T

T
∑

t=1

∑

−c≤j≤c,j ̸=0

log p(wt+j |wt) (1)

where c is the size of the training context (which can be a function of the center word wt). Larger
c results in more training examples and thus can lead to a higher accuracy, at the expense of the

2

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI ) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)
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log σ(−v′wi
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gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)
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Calcula7ng(all(gradients!(

•  We%went%through%gradients%for%each%center%vector%v%in%a%window%
•  We%also%need%gradients%for%external%vectors%v’%(u%on%the%board)%
•  Derive!%%

•  Generally%in%each%window%we%will%compute%updates%for%all%
parameters%that%are%being%used%in%that%window.%

•  For%example%window%size%c%=%1,%sentence:%%
% % %“I%like%learning%.”%

•  First%window%computes%gradients%for:%%
•  internal%vector%vlike%and%external%vectors%v’I%and%v’learning%

•  Next%window%in%that%sentence?%
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Compute(all(vector(gradients!(

•  We%oXen%define%the%set%of%ALL%parameters%in%a%model%in%terms%
of%one%long%vector%%

•  In%our%case%with%%
dZdimensional%vectors%
and%
V%many%words:%
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Gradient(Descent(

•  To%minimize%%%%%%%%%%%%%%over%the%full%batch%(the%en,re%training%data)%
would%require%us%to%compute%gradients%for%all%windows%

•  Updates%would%be%for%each%element%of%µ%:%

•  With%step%size%® 

•  In%matrix%nota,on%for%all%parameters:%
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Vanilla(Gradient(Descent(Code(
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Intui7on(
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•  For%a%simple%convex%func,on%over%two%parameters.%

•  Contour%lines%show%levels%of%objec,ve%func,on%
%

•  See%Whiteboard%
%
%
%
%
%
%
%
%
% % % % % % % % % % % % % %%



Stochas7c(Gradient(Descent(

•  But%Corpus%may%have%40B%tokens%and%windows%
•  You%would%wait%a%very%long%,me%before%making%a%single%update!%

•  Very%bad%idea%for%preey%much%all%neural%nets!%
•  Instead:%We%will%update%parameters%aXer%each%window%t%%

!%Stochas,c%gradient%descent%(SGD)%
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Stochas7c(gradients(with(word(vectors!(

•  But%in%each%window,%we%only%have%at%most%2c%Z1%words,%%
so%%%%%%%%%%%%%%%%%%is%very%sparse!%
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Stochas7c(gradients(with(word(vectors!(

•  We%may%as%well%only%update%the%word%vectors%that%actually%
appear!%

•  Solu,on:%either%keep%around%hash%for%word%vectors%or%only%
update%certain%columns%of%full%embedding%matrix%L%and%L’%

•  Important%if%you%have%millions%of%word%vectors%and%do%
distributed%compu,ng%to%not%have%to%send%gigan,c%updates%
around.%
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Approxima7ons:(PSet(1(

•  The%normaliza,on%factor%is%too%computa,onally%expensive%

•  Hence,%in%PSet1%you%will%implement%the%skipZgram%model%%

•  Main%idea:%train%binary%logis,c%regressions%for%a%true%pair%(center%
word%and%word%in%its%context%window)%and%a%couple%of%random%
pairs%(the%center%word%with%a%random%word)%
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training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI ) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)
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PSet(1:(The(skipFgram(model(and(nega7ve(sampling(

•  From%paper:%“Distributed%Representa,ons%of%Words%and%Phrases%
and%their%Composi,onality”%(Mikolov%et%al.%2013)%

•  Where%k%is%the%number%of%nega,ve%samples%and%we%use,%

•  The%sigmoid%func,on!%%

(we’ll%become%good%friends%soon)%

•  So%we%maximize%the%probability%%

of%two%words%coZoccurring%in%first%log%

!%
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training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI ) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI
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PSet(1:(The(skipFgram(model(and(nega7ve(sampling(

•  Slightly%clearer%nota,on:%

•  Max.%probability%that%real%outside%word%appears,%%
minimize%prob.%that%random%words%appear%around%center%word%

•  Pn%=%U(w)3/4/Z,%
the%unigram%distribu,on%U(w)%raised%to%the%3/4rd%power%
(We%provide%this%func,on%in%the%starter%code).%%

•  The%power%makes%less%frequent%words%be%sampled%more%oXen%

4/6/15%Richard%Socher%Lecture%1,%Slide%12%



PSet(1:(The(con7nuous(bag(of(words(model(

•  Main%idea%for%con,nuous%bag%of%words%(CBOW):%Predict%center%
word%from%sum%of%surrounding%word%vectors%instead%of%
predic,ng%surrounding%single%words%from%center%word%as%in%skipZ
gram%model%

•  To%make%PSet%slightly%easier:%
%
The%implementa,on%for%the%CBOW%model%is%not%required%and%for%
bonus%points!%
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What(to(do(with(the(two(sets(of(vectors?(

•  We%end%up%with%L%and%L’%from%all%the%vectors%v%and%v’%

•  Both%capture%similar%coZoccurrence%informa,on.%It%turns%out,%the%
best%solu,on%is%to%simply%sum%them%up:%
%

% % % %Lfinal%=%L%+%L’%

•  One%of%many%hyperparameters%explored%in%GloVe:'Global'
Vectors'for'Word'Representa4on'(Pennington%et%al.%(2014)%
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How(to(evaluate(word(vectors?(

•  Related%to%general%evalua,on%in%NLP:%Intrinsic%vs%extrinsic%
•  Intrinsic:%

•  Evalua,on%on%a%specific/intermediate%subtask%
•  Fast%to%compute%
•  Helps%to%understand%that%system%
•  Not%clear%if%really%helpful%unless%correla,on%to%real%task%is%established%

•  Extrinsic:%
•  Evalua,on%on%a%real%task%
•  Can%take%a%long%,me%to%compute%accuracy%
•  Unclear%if%the%subsystem%is%the%problem%or%its%interac,on%or%other%
subsystems%

•  If%replacing%one%subsystem%with%another%improves%accuracy%!%Winning!%

4/6/15%Richard%Socher%Lecture%1,%Slide%15%



Intrinsic(word(vector(evalua7on(

•  Word%Vector%Analogies:%Syntac,c%and%Seman,c%

•  Evaluate%word%vectors%by%how%well%their%cosine%distance%aXer%addi,on%
captures%intui,ve%seman,c%and%syntac,c%analogy%ques,ons%

•  Discarding%the%input%words%from%the%search!%

•  Problem:%What%if%the%informa,on%is%there%but%not%linear?%

4/6/15%Richard%Socher%Lecture%1,%Slide%16%

man:woman%::%king:?%

a:b%::%c:?%



Intrinsic(word(vector(evalua7on(

•  Word%Vector%Analogies:%Syntac,c%and%Seman7c%examples%from%
hep://code.google.com/p/word2vec/source/browse/trunk/ques,onsZ
words.txt%

%
:%cityZinZstate % % % % %problem:%different%ci,es%%
Chicago%Illinois%Houston%Texas % % %may%have%same%name%
Chicago%Illinois%Philadelphia%Pennsylvania%
Chicago%Illinois%Phoenix%Arizona%
Chicago%Illinois%Dallas%Texas%
Chicago%Illinois%Jacksonville%Florida%
Chicago%Illinois%Indianapolis%Indiana%
Chicago%Illinois%Aus,n%Texas%
Chicago%Illinois%Detroit%Michigan%
Chicago%Illinois%Memphis%Tennessee%
Chicago%Illinois%Boston%Massachusees%

4/6/15%Richard%Socher%Lecture%1,%Slide%17%



Intrinsic(word(vector(evalua7on(

•  Word%Vector%Analogies:%Syntac,c%and%Seman7c%examples%from%

:%capitalZworld % % % % %problem:%can%change%
Abuja%Nigeria%Accra%Ghana%
Abuja%Nigeria%Algiers%Algeria%
Abuja%Nigeria%Amman%Jordan%
Abuja%Nigeria%Ankara%Turkey%
Abuja%Nigeria%Antananarivo%Madagascar%
Abuja%Nigeria%Apia%Samoa%
Abuja%Nigeria%Ashgabat%Turkmenistan%
Abuja%Nigeria%Asmara%Eritrea%
Abuja%Nigeria%Astana%Kazakhstan%
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Intrinsic(word(vector(evalua7on(

•  Word%Vector%Analogies:%Syntac7c%and%Seman,c%examples%from%

:%gram4Zsuperla,ve%
bad%worst%big%biggest%
bad%worst%bright%brightest%
bad%worst%cold%coldest%
bad%worst%cool%coolest%
bad%worst%dark%darkest%
bad%worst%easy%easiest%
bad%worst%fast%fastest%
bad%worst%good%best%
bad%worst%great%greatest%
%
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Intrinsic(word(vector(evalua7on(

•  Word%Vector%Analogies:%Syntac7c%and%Seman,c%examples%from%

:%gram7ZpastZtense%
dancing%danced%decreasing%decreased%
dancing%danced%describing%described%
dancing%danced%enhancing%enhanced%
dancing%danced%falling%fell%
dancing%danced%feeding%fed%
dancing%danced%flying%flew%
dancing%danced%genera,ng%generated%
dancing%danced%going%went%
dancing%danced%hiding%hid%
dancing%danced%hitng%hit%
%
%
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Analogy(evalua7on(and(hyperparameters(

•  Most%careful%analysis%so%far:%Glove%word%vectors%(which%also%capture%
cooccurrence%counts%but%more%directly%so%than%skipZgram)%
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The total number of words in the corpus is pro-
portional to the sum over all elements of the co-
occurrence matrix X ,

|C | ⇠
X

i j

X
i j

=

|X |X

r=1

k
r↵
= kH|X |,↵ , (18)

where we have rewritten the last sum in terms of
the generalized harmonic number H

n,m . The up-
per limit of the sum, |X |, is the maximum fre-
quency rank, which coincides with the number of
nonzero elements in the matrix X . This number is
also equal to the maximum value of r in Eqn. (17)
such that X

i j

� 1, i.e., |X | = k1/↵ . Therefore we
can write Eqn. (18) as,

|C | ⇠ |X |↵ H|X |,↵ . (19)

We are interested in how |X | is related to |C | when
both numbers are large; therefore we are free to
expand the right hand side of the equation for large
|X |. For this purpose we use the expansion of gen-
eralized harmonic numbers (Apostol, 1976),

H
x,s =

x1�s

1 � s
+ ⇣ (s) + O(x�s ) if s > 0, s , 1 ,

(20)
giving,

|C | ⇠ |X |
1 � ↵ + ⇣ (↵) |X |↵ + O(1) , (21)

where ⇣ (s) is the Riemann zeta function. In the
limit that X is large, only one of the two terms on
the right hand side of Eqn. (21) will be relevant,
and which term that is depends on whether ↵ > 1,

|X | =
( O(|C |) if ↵ < 1,
O(|C |1/↵ ) if ↵ > 1. (22)

For the corpora studied in this article, we observe
that X

i j

is well-modeled by Eqn. (17) with ↵ =
1.25. In this case we have that |X | = O(|C |0.8).
Therefore we conclude that the complexity of the
model is much better than the worst case O(V 2),
and in fact it does somewhat better than the on-line
window-based methods which scale like O(|C |).
4 Experiments

4.1 Evaluation methods
We conduct experiments on the word analogy
task of Mikolov et al. (2013a), a variety of word
similarity tasks, as described in (Luong et al.,
2013), and on the CoNLL-2003 shared benchmark

Table 2: Results on the word analogy task, given
as percent accuracy. Underlined scores are best
within groups of similarly-sized models; bold
scores are best overall. HPCA vectors are publicly
available2; (i)vLBL results are from (Mnih et al.,
2013); skip-gram (SG) and CBOW results are
from (Mikolov et al., 2013a,b); we trained SG†

and CBOW† using the word2vec tool3. See text
for details and a description of the SVD models.

Model Dim. Size Sem. Syn. Tot.
ivLBL 100 1.5B 55.9 50.1 53.2
HPCA 100 1.6B 4.2 16.4 10.8
GloVe 100 1.6B 67.5 54.3 60.3

SG 300 1B 61 61 61
CBOW 300 1.6B 16.1 52.6 36.1
vLBL 300 1.5B 54.2 64.8 60.0
ivLBL 300 1.5B 65.2 63.0 64.0
GloVe 300 1.6B 80.8 61.5 70.3
SVD 300 6B 6.3 8.1 7.3

SVD-S 300 6B 36.7 46.6 42.1
SVD-L 300 6B 56.6 63.0 60.1
CBOW† 300 6B 63.6 67.4 65.7

SG† 300 6B 73.0 66.0 69.1
GloVe 300 6B 77.4 67.0 71.7
CBOW 1000 6B 57.3 68.9 63.7

SG 1000 6B 66.1 65.1 65.6
SVD-L 300 42B 38.4 58.2 49.2
GloVe 300 42B 81.9 69.3 75.0

dataset for NER (Tjong Kim Sang and De Meul-
der, 2003).

Word analogies. The word analogy task con-
sists of questions like, “a is to b as c is to ?”
The dataset contains 19,544 such questions, di-
vided into a semantic subset and a syntactic sub-
set. The semantic questions are typically analogies
about people or places, like “Athens is to Greece
as Berlin is to ?”. The syntactic questions are
typically analogies about verb tenses or forms of
adjectives, for example “dance is to dancing as fly
is to ?”. To correctly answer the question, the
model should uniquely identify the missing term,
with only an exact correspondence counted as a
correct match. We answer the question “a is to b
as c is to ?” by finding the word d whose repre-
sentation w

d

is closest to w
b

� w
a

+ w
c

according
to the cosine similarity.4

2http://lebret.ch/words/
3http://code.google.com/p/word2vec/
4Levy et al. (2014) introduce a multiplicative analogy

evaluation, 3COSMUL, and report an accuracy of 68.24% on



Analogy(evalua7on(and(hyperparameters(

•  Asymmetric%context%(only%words%to%the%leX)%are%not%as%good%

•  Best%dimensions%~300,%slight%dropZoff%aXerwards%%

•  But%this%might%be%different%for%downstream%tasks!%

•  Window%size%of%8%around%each%center%word%is%good%for%Glove%vectors%
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Figure 2: Accuracy on the analogy task as function of vector size and window size/type. All models are
trained on the 6 billion token corpus. In (a), the window size is 10. In (b) and (c), the vector size is 100.

Word similarity. While the analogy task is our
primary focus since it tests for interesting vector
space substructures, we also evaluate our model on
a variety of word similarity tasks in Table 3. These
include WordSim-353 (Finkelstein et al., 2001),
MC (Miller and Charles, 1991), RG (Rubenstein
and Goodenough, 1965), SCWS (Huang et al.,
2012), and RW (Luong et al., 2013).
Named entity recognition. The CoNLL-2003
English benchmark dataset for NER is a collec-
tion of documents from Reuters newswire articles,
annotated with four entity types: person, location,
organization, and miscellaneous. We train mod-
els on CoNLL-03 training data on test on three
datasets: 1) ConLL-03 testing data, 2) ACE Phase
2 (2001-02) and ACE-2003 data, and 3) MUC7
Formal Run test set. We adopt the BIO2 annota-
tion standard, as well as all the preprocessing steps
described in (Wang and Manning, 2013). We use a
comprehensive set of discrete features that comes
with the standard distribution of the Stanford NER
model (Finkel et al., 2005). A total of 437,905
discrete features were generated for the CoNLL-
2003 training dataset. In addition, 50-dimensional
vectors for each word of a five-word context are
added and used as continuous features. With these
features as input, we trained a conditional random
field (CRF) with exactly the same setup as the
CRFjoin model of (Wang and Manning, 2013).

4.2 Corpora and training details

We trained our model on five corpora of varying
sizes: a 2010 Wikipedia dump with 1 billion to-
kens; a 2014 Wikipedia dump with 1.6 billion to-
kens; Gigaword 5 which has 4.3 billion tokens; the
combination Gigaword5 + Wikipedia2014, which

the analogy task. This number is evaluated on a subset of the
dataset so it is not included in Table 2. 3COSMUL performed
worse than cosine similarity in almost all of our experiments.

has 6 billion tokens; and on 42 billion tokens of
web data, from Common Crawl5. We tokenize
and lowercase each corpus with the Stanford to-
kenizer, build a vocabulary of the 400,000 most
frequent words6, and then construct a matrix of co-
occurrence counts X . In constructing X , we must
choose how large the context window should be
and whether to distinguish left context from right
context. We explore the effect of these choices be-
low. In all cases we use a decreasing weighting
function, so that word pairs that are d words apart
contribute 1/d to the total count. This is one way
to account for the fact that very distant word pairs
are expected to contain less relevant information
about the words’ relationship to one another.

For all our experiments, we set xmax = 100,
↵ = 3/4, and train the model using AdaGrad
(Duchi et al., 2011), stochastically sampling non-
zero elements from X , with initial learning rate of
0.05. We run 50 iterations for vectors smaller than
300 dimensions, and 100 iterations otherwise (see
Section 4.6 for more details about the convergence
rate). Unless otherwise noted, we use a context of
ten words to the left and ten words to the right.

The model generates two sets of word vectors,
W and W̃ . When X is symmetric, W and W̃ are
equivalent and differ only as a result of their ran-
dom initializations; the two sets of vectors should
perform equivalently. On the other hand, there is
evidence that for certain types of neural networks,
training multiple instances of the network and then
combining the results can help reduce overfitting
and noise and generally improve results (Ciresan
et al., 2012). With this in mind, we choose to use

5To demonstrate the scalability of the model, we also
trained it on a much larger sixth corpus, containing 840 bil-
lion tokens of web data, but in this case we did not lowercase
the vocabulary, so the results are not directly comparable.

6For the model trained on Common Crawl data, we use a
larger vocabulary of about 2 million words.
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Figure 4: Overall accuracy on the word analogy task as a function of training time, which is governed by
the number of iterations for GloVe and by the number of negative samples for CBOW (a) and skip-gram
(b). In all cases, we train 300-dimensional vectors on the same 6B token corpus (Wikipedia 2014 +
Gigaword 5) with the same 400,000 word vocabulary, and use a symmetric context window of size 10.

it specifies a learning schedule specific to a single
pass through the data, making a modification for
multiple passes a non-trivial task. Another choice
is to vary the number of negative samples. Adding
negative samples effectively increases the number
of training words seen by the model, so in some
ways it is analogous to extra epochs.

We set any unspecified parameters to their de-
fault values, assuming that they are close to opti-
mal, though we acknowledge that this simplifica-
tion should be relaxed in a more thorough analysis.

In Fig. 4, we plot the overall performance on
the analogy task as a function of training time.
The two x-axes at the bottom indicate the corre-
sponding number of training iterations for GloVe
and negative samples for word2vec. We note
that word2vec’s performance actually decreases
if the number of negative samples increases be-
yond about 10. Presumably this is because the
negative sampling method does not approximate
the target probability distribution well.9

For the same corpus, vocabulary, window size,
and training time, GloVe consistently outperforms
word2vec. It achieves better results faster, and
also obtains the best results irrespective of speed.

5 Conclusion

Recently, considerable attention has been focused
on the question of whether distributional word
representations are best learned from count-based

9In contrast, noise-contrastive estimation is an approxi-
mation which improves with more negative samples. In Ta-
ble 1 of (Mnih et al., 2013), accuracy on the analogy task is a
non-decreasing function of the number of negative samples.

methods or from prediction-based methods. Cur-
rently, prediction-based models garner substantial
support; for example, Baroni et al. (2014) argue
that these models perform better across a range of
tasks. In this work we argue that the two classes
of methods are not dramatically different at a fun-
damental level since they both probe the under-
lying co-occurrence statistics of the corpus, but
the efficiency with which the count-based meth-
ods capture global statistics can be advantageous.
We construct a model that utilizes this main ben-
efit of count data while simultaneously capturing
the meaningful linear substructures prevalent in
recent log-bilinear prediction-based methods like
word2vec. The result, GloVe, is a new global
log-bilinear regression model for the unsupervised
learning of word representations that outperforms
other models on word analogy, word similarity,
and named entity recognition tasks.
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Table 4: F1 score on NER task with 50d vectors.
Discrete is the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.

Model Dev Test ACE MUC7
Discrete 91.0 85.4 77.4 73.4

SVD 90.8 85.7 77.3 73.7
SVD-S 91.0 85.5 77.6 74.3
SVD-L 90.5 84.8 73.6 71.5
HPCA 92.6 88.7 81.7 80.7
HSMN 90.5 85.7 78.7 74.7

CW 92.2 87.4 81.7 80.2
CBOW 93.1 88.2 82.2 81.1
GloVe 93.2 88.3 82.9 82.2

shown for neural vectors in (Turian et al., 2010).

4.4 Model Analysis: Vector Length and
Context Size

In Fig. 2, we show the results of experiments that
vary vector length and context window. A context
window that extends to the left and right of a tar-
get word will be called symmetric, and one which
extends only to the left will be called asymmet-
ric. In (a), we observe diminishing returns for vec-
tors larger than about 200 dimensions. In (b) and
(c), we examine the effect of varying the window
size for symmetric and asymmetric context win-
dows. Performance is better on the syntactic sub-
task for small and asymmetric context windows,
which aligns with the intuition that syntactic infor-
mation is mostly drawn from the immediate con-
text and can depend strongly on word order. Se-
mantic information, on the other hand, is more fre-
quently non-local, and more of it is captured with
larger window sizes.

4.5 Model Analysis: Corpus Size
In Fig. 3, we show performance on the word anal-
ogy task for 300-dimensional vectors trained on
different corpora. On the syntactic subtask, there
is a monotonic increase in performance as the cor-
pus size increases. This is to be expected since
larger corpora typically produce better statistics.
Interestingly, the same trend is not true for the se-
mantic subtask, where the models trained on the
smaller Wikipedia corpora do better than those
trained on the larger Gigaword corpus. This is
likely due to the large number of city- and country-
based analogies in the analogy dataset and the fact
that Wikipedia has fairly comprehensive articles
for most such locations. Moreover, Wikipedia’s
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Figure 3: Accuracy on the analogy task for 300-
dimensional vectors trained on different corpora.

entries are updated to assimilate new knowledge,
whereas Gigaword is a fixed news repository with
outdated and possibly incorrect information.

4.6 Model Analysis: Run-time

The total run-time is split between populating X
and training the model. The former depends on
many factors, including window size, vocabulary
size, and corpus size. Though we did not do so,
this step could easily be parallelized across mul-
tiple machines (see, e.g., Lebret and Collobert
(2014) for some benchmarks). Using a single
thread of a dual 2.1GHz Intel Xeon E5-2658 ma-
chine, populating X with a 10 word symmetric
context window, a 400,000 word vocabulary, and
a 6 billion token corpus takes about 85 minutes.
Given X , the time it takes to train the model de-
pends on the vector size and the number of itera-
tions. For 300-dimensional vectors with the above
settings (and using all 32 cores of the above ma-
chine), a single iteration takes 14 minutes. See
Fig. 4 for a plot of the learning curve.

4.7 Model Analysis: Comparison with
word2vec

A rigorous quantitative comparison of GloVe with
word2vec is complicated by the existence of
many parameters that have a strong effect on per-
formance. We control for the main sources of vari-
ation that we identified in Sections 4.4 and 4.5 by
setting the vector length, context window size, cor-
pus, and vocabulary size to the configuration men-
tioned in the previous subsection.

The most important remaining variable to con-
trol for is training time. For GloVe, the rele-
vant parameter is the number of training iterations.
For word2vec, the obvious choice would be the
number of training epochs. Unfortunately, the
code is currently designed for only a single epoch:
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•  Word%vector%distances%and%their%correla,on%with%human%judgments%
•  Example%dataset:%WordSim353%

hep://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/%

Word%1 %Word%2 %Human%(mean)%
,ger %cat %7.35%
,ger %,ger %10.00%
book %paper %7.46%
computer %internet%7.58%
plane %car %5.77%
professor %doctor %6.62%
stock %phone %1.62%
stock %CD %1.31%
stock %jaguar %0.92%
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•  Word%vector%distances%and%their%correla,on%with%human%judgments%

•  Some%ideas%from%Glove%paper%have%been%shows%to%improve%skipZgram%(SG)%
model%also%(e.g.%sum%both%vectors)%
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the sum W +W̃ as our word vectors. Doing so typ-
ically gives a small boost in performance, with the
biggest increase in the semantic analogy task.

We compare with the published results of a va-
riety of state-of-the-art models, as well as with
our own results produced using the word2vec

tool and with several baselines using SVDs. With
word2vec, we train the skip-gram (SG†) and
continuous bag-of-words (CBOW†) models on the
6 billion token corpus (Wikipedia 2014 + Giga-
word 5) with a vocabulary of the top 400,000 most
frequent words and a context window size of 10.
We used 10 negative samples, which we show in
Section 4.6 to be a good choice for this corpus.

For the SVD baselines, we generate a truncated
matrix Xtrunc which retains the information of how
frequently each word occurs with only the top
10,000 most frequent words. This step is typi-
cal of many matrix-factorization-based methods as
the extra columns can contribute a disproportion-
ate number of zero entries and the methods are
otherwise computationally expensive.

The singular vectors of this matrix constitute
the baseline “SVD”. We also evaluate two related
baselines: “SVD-S” in which we take the SVD ofp

Xtrunc, and “SVD-L” in which we take the SVD
of log(1+ Xtrunc). Both methods help compress the
otherwise large range of values in X .7

4.3 Results
We present results on the word analogy task in Ta-
ble 2. The GloVe model performs significantly
better than the other baselines, often with smaller
vector sizes and smaller corpora. Our results us-
ing the word2vec tool are somewhat better than
most of the previously published results. This is
due to a number of factors, including our choice to
use negative sampling (which typically works bet-
ter than the hierarchical softmax), the number of
negative samples, and the choice of the corpus.

We demonstrate that the model can easily be
trained on a large 42 billion token corpus, with a
substantial corresponding performance boost. We
note that increasing the corpus size does not guar-
antee improved results for other models, as can be
seen by the decreased performance of the SVD-

7We also investigated several other weighting schemes for
transforming X ; what we report here performed best. Many
weighting schemes like PPMI destroy the sparsity of X and
therefore cannot feasibly be used with large vocabularies.
With smaller vocabularies, these information-theoretic trans-
formations do indeed work well on word similarity measures,
but they perform very poorly on the word analogy task.

Table 3: Spearman rank correlation on word simi-
larity tasks. All vectors are 300-dimensional. The
CBOW⇤ vectors are from the word2vec website
and differ in that they contain phrase vectors.

Model Size WS353 MC RG SCWS RW
SVD 6B 35.3 35.1 42.5 38.3 25.6

SVD-S 6B 56.5 71.5 71.0 53.6 34.7
SVD-L 6B 65.7 72.7 75.1 56.5 37.0
CBOW† 6B 57.2 65.6 68.2 57.0 32.5

SG† 6B 62.8 65.2 69.7 58.1 37.2
GloVe 6B 65.8 72.7 77.8 53.9 38.1
SVD-L 42B 74.0 76.4 74.1 58.3 39.9
GloVe 42B 75.9 83.6 82.9 59.6 47.8

CBOW⇤ 100B 68.4 79.6 75.4 59.4 45.5

L model on this larger corpus. The fact that this
basic SVD model does not scale well to large cor-
pora lends further evidence to the necessity of the
type of weighting scheme proposed in our model.

Table 3 shows results on five different word
similarity datasets. A similarity score is obtained
from the word vectors by first normalizing each
feature across the vocabulary and then calculat-
ing the cosine similarity. We compute Spearman’s
rank correlation coefficient between this score and
the human judgments. CBOW⇤ denotes the vec-
tors available on the word2vec website that are
trained with word and phrase vectors on 100B
words of news data. GloVe outperforms it while
using a corpus less than half the size.

Table 4 shows results on the NER task with the
CRF-based model. The L-BFGS training termi-
nates when no improvement has been achieved on
the dev set for 25 iterations. Otherwise all config-
urations are identical to those used by Wang and
Manning (2013). The model labeled Discrete is
the baseline using a comprehensive set of discrete
features that comes with the standard distribution
of the Stanford NER model, but with no word vec-
tor features. In addition to the HPCA and SVD
models discussed previously, we also compare to
the models of Huang et al. (2012) (HSMN) and
Collobert and Weston (2008) (CW). We trained
the CBOW model using the word2vec tool8.
The GloVe model outperforms all other methods
on all evaluation metrics, except for the CoNLL
test set, on which the HPCA method does slightly
better. We conclude that the GloVe vectors are
useful in downstream NLP tasks, as was first

8We use the same parameters as above, except in this case
we found 5 negative samples to work slightly better than 10.
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•  You%may%hope%that%one%vector%captures%both%kinds%of%
informa,on%(run%=%verb%and%noun)%but%then%vector%is%pulled%in%
different%direc,ons%

•  Alterna,ve%described%in:%Improving'Word'Representa4ons'Via'
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%

4/6/15%Richard%Socher%Lecture%1,%Slide%27%



But(what(about(ambiguity?((

•  Improving'Word'Representa4ons'Via'Global'Context'And'
Mul4ple'Word'Prototypes%(Huang%et%al.%2012)%
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•  Extrinsic%evalua,on%of%word%vectors:%All%subsequent%tasks%in%this%class%

•  One%example%where%good%word%vectors%should%help%directly:%named%en,ty%
recogni,on:%finding%a%person,%organiza,on%or%loca,on%

•  Next:%How%to%use%word%vectors%in%neural%net%models!%
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Table 4: F1 score on NER task with 50d vectors.
Discrete is the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.

Model Dev Test ACE MUC7
Discrete 91.0 85.4 77.4 73.4

SVD 90.8 85.7 77.3 73.7
SVD-S 91.0 85.5 77.6 74.3
SVD-L 90.5 84.8 73.6 71.5
HPCA 92.6 88.7 81.7 80.7
HSMN 90.5 85.7 78.7 74.7

CW 92.2 87.4 81.7 80.2
CBOW 93.1 88.2 82.2 81.1
GloVe 93.2 88.3 82.9 82.2

shown for neural vectors in (Turian et al., 2010).

4.4 Model Analysis: Vector Length and
Context Size

In Fig. 2, we show the results of experiments that
vary vector length and context window. A context
window that extends to the left and right of a tar-
get word will be called symmetric, and one which
extends only to the left will be called asymmet-
ric. In (a), we observe diminishing returns for vec-
tors larger than about 200 dimensions. In (b) and
(c), we examine the effect of varying the window
size for symmetric and asymmetric context win-
dows. Performance is better on the syntactic sub-
task for small and asymmetric context windows,
which aligns with the intuition that syntactic infor-
mation is mostly drawn from the immediate con-
text and can depend strongly on word order. Se-
mantic information, on the other hand, is more fre-
quently non-local, and more of it is captured with
larger window sizes.

4.5 Model Analysis: Corpus Size
In Fig. 3, we show performance on the word anal-
ogy task for 300-dimensional vectors trained on
different corpora. On the syntactic subtask, there
is a monotonic increase in performance as the cor-
pus size increases. This is to be expected since
larger corpora typically produce better statistics.
Interestingly, the same trend is not true for the se-
mantic subtask, where the models trained on the
smaller Wikipedia corpora do better than those
trained on the larger Gigaword corpus. This is
likely due to the large number of city- and country-
based analogies in the analogy dataset and the fact
that Wikipedia has fairly comprehensive articles
for most such locations. Moreover, Wikipedia’s
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Figure 3: Accuracy on the analogy task for 300-
dimensional vectors trained on different corpora.

entries are updated to assimilate new knowledge,
whereas Gigaword is a fixed news repository with
outdated and possibly incorrect information.

4.6 Model Analysis: Run-time

The total run-time is split between populating X
and training the model. The former depends on
many factors, including window size, vocabulary
size, and corpus size. Though we did not do so,
this step could easily be parallelized across mul-
tiple machines (see, e.g., Lebret and Collobert
(2014) for some benchmarks). Using a single
thread of a dual 2.1GHz Intel Xeon E5-2658 ma-
chine, populating X with a 10 word symmetric
context window, a 400,000 word vocabulary, and
a 6 billion token corpus takes about 85 minutes.
Given X , the time it takes to train the model de-
pends on the vector size and the number of itera-
tions. For 300-dimensional vectors with the above
settings (and using all 32 cores of the above ma-
chine), a single iteration takes 14 minutes. See
Fig. 4 for a plot of the learning curve.

4.7 Model Analysis: Comparison with
word2vec

A rigorous quantitative comparison of GloVe with
word2vec is complicated by the existence of
many parameters that have a strong effect on per-
formance. We control for the main sources of vari-
ation that we identified in Sections 4.4 and 4.5 by
setting the vector length, context window size, cor-
pus, and vocabulary size to the configuration men-
tioned in the previous subsection.

The most important remaining variable to con-
trol for is training time. For GloVe, the rele-
vant parameter is the number of training iterations.
For word2vec, the obvious choice would be the
number of training epochs. Unfortunately, the
code is currently designed for only a single epoch:
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•  What%is%the%major%benefit%of%deep%learned%word%
vectors?%

•  Ability%to%also%classify%words%accurately%

•  Countries%cluster%together%!%classifying%loca,on%words%
should%be%possible%with%word%vectors%

•  Incorporate%any(informa,on%into%them%other%tasks%

•  Project%sen,ment%into%words%to%find%most%posi,ve/
nega,ve%words%in%corpus%
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Logis,c%regression%=%SoXmax%classifica,on%on%word%

vector%x%to%obtain%probability%for%class%y:%
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The(soOmax(F(details(

•  Terminology:%Loss%func,on%=%cost%func,on%=%objec,ve%func,on%

•  Loss%for%soXmax:%Cross%entropy%

•  To%compute%p(y|x):%first%take%the%y’th%row%of%W%and%mul,ply%that%

with%row%with%x:%

•  Compute%all%fc%for%c=1,…,C%

•  Normalize%to%obtain%probability%with%soXmax%func,on:%%
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The(soOmax(and(crossFentropy(error(

•  The%loss%wants%to%maximize%the%probability%of%the%correct%class%y%

•  Hence,%we%minimize%the%nega,ve%log%probability%of%that%class:%

•  As%before:%we%sum%up%mul,ple%cross%entropy%errors%if%we%have%
mul,ple%classifica,ons%in%our%total%error%func,on%over%the%
corpus%(more(next(lecture)%
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Background:(The(Cross(entropy(error(

•  Assuming%a%ground%truth%(or%gold%or%target)%probability%
distribu,on%that%is%1%at%the%right%class%and%0%everywhere%else:%
p%=%[0,…,0,1,0,…0]%and%our%computed%probability%is%q,%then%the%
cross%entropy%is:%%

•  Because%of%oneZhot%p,%the%only%term%leX%is%the%nega,ve%
probability%of%the%true%class%

•  CrossZentropy%can%be%reZwrieen%in%terms%of%the%entropy%and%
KullbackZLeibler%divergence%between%the%two%distribu,ons:%

4/6/15%Richard%Socher%Lecture%1,%Slide%34%



The(KL(divergence(

•  Cross%entropy:%
•  Because%p%is%zero%in%our%case%(and%even%if%it%wasn’t%it%would%be%

fixed%and%have%no%contribu,on%to%gradient),%to%minimize%this%is%
equal%to%minimizing%the%KL%divergence%

•  The%KL%divergence%is%not(a(distance(but%a%nonZsymmetric%
measure%of%the%difference%between%two%probability%distribu,ons%
p%and%q%%
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PSet(1(

•  Derive%the%gradient%of%the%cross%entropy%error%with%respect%to%
the%input%word%vector%x%and%the%matrix%W%
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Simple(single(word(classifica7on(

•  Example:%Sen,ment%

•  Two%op,ons:%train%only%soBmax%weights%W%and%fix%word%vectors%
or%also%train%word%vectors%

•  Ques,on:%What%are%the%advantages%and%disadvantages%of%
training%the%word%vectors?%

•  Pro:%beeer%fit%on%training%data%
•  Con:%Worse%generaliza,on%because%the%words%move%in%the%

vector%space%
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Visualiza7on(of(sen7ment(trained(word(vectors(
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Next(level(up:(Window(classifica7on(

•  Single%word%classifica,on%has%no%context!%%

•  Let’s%add%context%by%taking%in%windows%and%classifying%the%center%
word%of%that%window!%

•  Possible:%SoXmax%and%cross%entropy%error%or%maxFmargin(loss(

•  Next%class!%
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Overview&Today:&

•  General'classifica,on'background'

•  Upda,ng'word'vectors'for'classifica,on'

•  Window'classifica,on'&'cross'entropy'error'deriva,on',ps'

•  A'single'layer'neural'network!'

•  (MaxAMargin'loss'and'backprop)'

4/8/15'Richard'Socher'Lecture'1,'Slide'2'



Refresher:&Classifica;on&setup&and&nota;on&

•  Generally'we'have'a'training'dataset'consis,ng'of'samples''
'

' ' ' '{xi,yi}Ni=1'
'

•  xi'A'inputs,'e.g.'words'(indices'or'vectors!),'context'windows,'
sentences,'documents,'etc.'

•  yi'A'labels'we'try'to'predict,'e.g.'sen,ment,'other'words,'named'
en,,es'(loc.,'org.'per.),'buy/sell'decision,'later:'mul,Aword'
sequences'
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Classifica;on&intui;on&

•  Training'data:'{xi,yi}Ni=1'

•  Simple'illustra,on'case:''
•  Fixed'2d'word'vectors'to'classify'
•  Using'logis,c'regression'
• !'linear'decision'boundary'!'
'

•  General'ML:'assume'x'is'fixed'and''
only'train'logis,c'regression'weights''
W'and'only'modify'the'decision'boundary'

4/8/15'Richard'Socher'Lecture'1,'Slide'4'

Visualiza,ons'with'ConvNetJS'by'Karpathy'
h^p://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html'



Classifica;on&nota;on&

•  General'ML:'only'train'logis,c''
regression'weights'and'hence''
only'modify'the'decision'boundary'

•  Loss'func,on'over'dataset'{xi,yi}Ni=1''

•  Where'for'each'data'pair'(xi,yi):''
•  We'can'write'f'in'matrix'nota,on'and''

index'elements'of'it'based'on'class:"
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Classifica;on:&Regulariza;on!&

•  Really'full'loss'func,on'over'any'dataset'includes'regulariza;on'
over'all'parameters'µ:'

•  Regulariza,on'will'prevent'overfi`ng''
when'we'have'a'lot'of'features'(or''
later'a'very'powerful/deep'model)'
•  xAaxis:'more'powerful'model'or''
more'training'itera,ons'

•  Blue:'training'error,'red:'test'error'
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Classifica;on&difference&with&word&vectors&

•  For'general'machine'learning'µ usually'
only'consists'of'columns'of'W:'

•  So'we'only'update'the'decision''
boundary'

4/8/15'Richard'Socher'Lecture'1,'Slide'7'

Visualiza,ons'with'ConvNetJS'by'Karpathy'



Classifica;on&difference&with&word&vectors&

•  For'general'ML'µ usually'only'consists'of'columns'of'W'
•  Addi,onally'common'in'deep'learning:'

•  Learn'both'W'and'word'vectors'x'

4/8/15'Richard'Socher'Lecture'1,'Slide'8'

Very'large!'

Overfi`ng'Danger!'



Loosing&generaliza;on&by&reItraining&word&vectors&

•  Se`ng:'Training'logis,c'regression'for'movie'review'sen,ment'
and'in'the'training'data'we'have'the'word'''
•  “TV”'and'“telly”'

•  In'the'tes,ng'data'we'have''
•  “television”'

•  Originally'they'were'all'similar''
(from'preAtraining'word'vectors)'

•  What'happens'when'we'train'
the'word'vectors?'

4/8/15'Richard'Socher'Lecture'1,'Slide'9'
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Loosing&generaliza;on&by&reItraining&word&vectors&

•  What'happens'when'we'train'the'word'vectors?'
•  Those'that'are'in'the'training'data'move'around''
• Words'from'preAtraining'that'do'NOT'appear'in'training'stay'

•  Example:'
•  In'training'data:'“TV”'and'“telly”'
•  In'tes,ng'data'only:'“television”'

4/8/15'Richard'Socher'Lecture'1,'Slide'10'
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Loosing&generaliza;on&by&reItraining&word&vectors&

•  Take'home'message:'
'
'
If'you'only'have'a'small''
training'data'set,'don’t''
train'the'word'vectors.''
'
'
If'you'have'have'a'very''
large'dataset,'it'may''
work'be^er'to'train''
word'vectors'to'the'task.'
'
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Side&note&on&word&vectors&nota;on&

•  The'word'vector'matrix'L'is'also'called'lookup'table'

•  Word'vectors'='word'embeddings'='word'representa,ons'(mostly)'

•  Mostly'from'methods'like'word2vec'or'Glove'
''''''''''''''''''''''''''''''''''''''''''''''|V|'
'

'L''='''''''''d''' ' ''…'''''''''… ''''''''''''
'

' ''''''aardvark'a''''…'meta'''''…'''zebra'

•  These'are'the'word'features'xword'from'now'on'

•  Conceptually'you'get'a'word’s'vector'by'lep'mul,plying'a'oneAhot'
vector'e'by'L:'''''x'='Le"2"d£"V"·"V"£"1"

['''''''''''']'
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Window&classifica;on&

•  Classifying'single'words'is'rarely'done.'

•  Interes,ng'problems'like'ambiguity'arise'in'context!'

•  Example:'autoAantonyms:'
•  "To'sanc,on"'can'mean'"to'permit"'or'"to'punish.”'
•  "To'seed"'can'mean'"to'place'seeds"'or'"to'remove'seeds."'

•  Example:'ambiguous'named'en,,es:'
•  Paris'!'Paris'Hilton'vs'Paris,'France'
•  Hathaway'!'Berkshire'Hathaway,'Anne'Hathaway'
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Window&classifica;on&

•  Idea:'Instead'of'classifying'a'single'word,'just'classify'a'word'
together'with'its'context'window'of'neighboring'words.'

•  For'example'named'en,ty'recogni,on'into'4'classes:'
•  Person,'loca,on,'organiza,on,'none'

•  Many'possibili,es'exist'for'classifying'one'word'in'context,'e.g.'
averaging'all'the'words'in'a'window'but'that'looses'posi,on'
informa,on'
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Window&classifica;on&

•  Most'commonly'used'technique'to'classify'a'word'in'a'window'
•  Train'classifier'by'assigning'a'label'to'a'center'word'and'

concatena,ng'all'word'vectors'surrounding'it.'

•  Example:'Classify'Paris'in'the'context'of'this'sentence'with'
window'length'2:''
'

'…'''''museums''''''in'''''''''Paris'''''''''are''''''amazing''''…'.'
'
Xwindow''='[''xmuseums''''''''xin'''''''''''xParis'''''''''''''xare'''''''''xamazing']'

•  Resul,ng'vector'xwindow'='x'2 R5d'''','a'column'vector!'
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Simplest&window&classifer:&SoLmax&

•  With'x"="xwindow"we'can'use'the'same'sopmax'classifier'as'before'

•  With'cross'entropy'error'as'before:''
'
'
'

•  But'how'do'you'update'the'word'vectors?'

4/8/15'Richard'Socher'Lecture'1,'Slide'16'
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='predicted'model''
output'probability'
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Upda;ng&concatenated&word&vectors&

•  Short'answer:'Just'take'deriva,ves'as'before'

•  Long'answer:'Let’s'go'over'the'steps'together'(you’ll'have'to'fill'
in'the'details'in'PSet'1!)'

•  Define:''
•  '''':'sopmax'probability'output'vector'(see'previous'slide)'''''''

•  "":"target'probability'distribu,on'(all'0’s'except'at'ground'
truth'index'of'class'y,'where'it’s'1)'

•  '''''''''''''''''''''''''and'fc'='c’th'element'of'the'f'vector'

•  Hard,'the'first',me,'hence'some',ps'now':)'
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•  Tip'1:'Carefully'define'your'variables'and'

keep'track'of'their'dimensionality!'

•  Tip'2:'Know&thy&chain&rule&and'don’t'forget'in'which'variables'
other'variables'are'being'used:'

•  Tip'3:'For'the'sopmax'part'of'the'deriva,ve:'First'take'the'

deriva,ve'wrt'fc'when'c=y'(the'correct'class),'then'take'

deriva,ve'wrt'fc'when'c≠'y'(all'the'incorrect'classes)'

Upda;ng&concatenated&word&vectors&
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•  Tip'4:'When'you'take'deriva,ve'wrt'
one'element'of'f,'try'to'see'if'you'can'
create'a'gradient'in'the'end'that'includes'
all'par,al'deriva,ves:'

•  Tip'5:'To'later'not'go'insane,'think'of'your'results'in'terms'of'
vector'opera,ons'and'define'new,'single'indexAable'vectors:'

Upda;ng&concatenated&word&vectors&
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•  Tip'5:'When'you'start'with'the'chain'rule,'
first'use'explicit'sums'and'look'at''
par,al'deriva,ves'of'e.g.'xi'or'Wij'
'

•  Tip'6:'To'clean'it'up'for'even'more'complex'func,ons'later:'
Know'dimensionality'of'variables'&simplify'into'matrix'nota,on'

•  Tip'7:'Write'this'out'in'full'sums'if'it’s'not'clear!'

Upda;ng&concatenated&word&vectors&
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•  Tip'5:'When'you'start'with'the'chain'rule,'
first'use'explicit'sums'and'look'at''
par,al'deriva,ves'of'e.g.'xi'or'Wij'
'

•  Tip'6:'To'clean'it'up'for'even'more'complex'func,ons'later:'
Know'dimensionality'of'variables'&simplify'into'matrix'nota,on'

•  Tip'7:'Write'this'out'in'full'sums'if'it’s'not'clear!'

Upda;ng&concatenated&word&vectors&
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•  What'is'the'dimensionality'of'

•  X'is'the'en,re'window'of'5'dAdimensional'word'vectors,'so'the'
deriva,ve'wrt'to'x'has'to'have'the'same'dimensionality:'

Upda;ng&concatenated&word&vectors&
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•  The'gradient'that'arrives'at'and'updates'the'word'vectors'can'
simply'be'split'up'for'each'word'vector:'

•  Let''

•  With'xwindow''='[''xmuseums'''''xin''''xParis''''xare'''xamazing']'

•  We'have'

'

Upda;ng&concatenated&word&vectors&
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•  This'will'push'word'vectors'into'areas'such'they'will'be'helpful'
in'determining'named'en,,es.''

•  For'example,'the'model'can'learn'that'seeing'xin'as'the'word'
just'before'the'center'word'is'indica,ve'for'the'center'word'to'
be'a'loca,on'

'

Upda;ng&concatenated&word&vectors&
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•  The'gradient'of'J'wrt'the'sopmax'weights'W!'

•  Similar'steps,'write'down'par,al'wrt'Wij'first!'
•  Then'we'have'full''

What’s&missing&for&training&the&window&model?&
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A&note&on&matrix&implementa;ons&

4/8/15'Richard'Socher'26'

•  There'are'two'expensive'opera,ons'in'the'sopmax:'

•  The'matrix'mul,plica,on''''''''''''''''''''and'the'exp'

•  A'for'loop'is'never'as'efficient'when'you'implement'it'
compared'vs'when'you'use'a'larger'matrix'
mul,plica,on'that'does'the'same'mathema,cal'
opera,on!'

•  Example'code'!'



A&note&on&matrix&implementa;ons&

4/8/15'Richard'Socher'27'

•  Looping'over'word'vectors'instead'of'concatena,ng'
them'all'into'one'large'matrix'and'then'mul,plying'
the'sopmax'weights'with'that'matrix'

•  1000'loops,'best'of'3:'639'µs'per'loop'
10000'loops,'best'of'3:'53.8'µs'per'loop'



A&note&on&matrix&implementa;ons&

4/8/15'Richard'Socher'28'

•  Result'of'faster'method'is'a'C'x'N'matrix:'

•  Each'column'is'an'f(x)'in'our'nota,on'(unnormalized'class'scores)'

•  Matrices'are'awesome!''

•  You'should'speed'test'your'code'a'lot'too'



SoLmax&(=&logis;c&regression)&is&not&very&powerful&

4/8/15'Richard'Socher'29'

•  Sopmax'only'gives'linear'decision'boundaries'in'the'
original'space.''

•  With'li^le'data'that'can'be'a'good'regularizer'

•  With'more'data'it'is'very'limi,ng!'



SoLmax&(=&logis;c&regression)&is&not&very&powerful&

4/8/15'Richard'Socher'30'

•  Sopmax'only'linear'decision'boundaries'

•  ' ' ' ' ' '!'Lame'when'problem'
' ' ' ' ''''''is'complex'

•  ' ' ' ' ' 'Wouldn’t'it'be'cool'to''
' ' ' ' 'get'these'correct?'



Neural&Nets&for&the&Win!&

4/8/15'Richard'Socher'31'

•  Neural'networks'can'learn'much'more'complex'
func,ons'and'nonlinear'decision'boundaries!'



From&logis;c&regression&to&neural&nets&
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Demys;fying&neural&networks&

Neural'networks'come'with'
their'own'terminological'
baggage''

…'just'like'SVMs'

'

But'if'you'understand'how'
sopmax'models'work'

Then'you&already&understand'the'
opera,on'of'a'basic'neural'
network'neuron!'

A&single&neuron&
A'computa,onal'unit'with'n"(3)'inputs'

and'1'output'
and'parameters'W,"b'

Ac,va,on'
func,on'

Inputs'

Bias'unit'corresponds'to'intercept'term'

Output'
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A&neuron&is&essen;ally&a&binary&logis;c&regression&unit&

hw,b(x) = f (w
Tx + b)

f (z) = 1
1+ e−z

w,'b'are'the'parameters'of'this'neuron'
i.e.,'this'logis,c'regression'model'

34'

b:"We'can'have'an'“always'on”'
feature,'which'gives'a'class'prior,'
or'separate'it'out,'as'a'bias'term'



A&neural&network&&
=&running&several&logis;c&regressions&at&the&same&;me&
If'we'feed'a'vector'of'inputs'through'a'bunch'of'logis,c'regression'
func,ons,'then'we'get'a'vector'of'outputs'…'

But"we"don’t"have"to"decide"
ahead"of":me"what"variables"
these"logis:c"regressions"are"
trying"to"predict!"
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A&neural&network&&
=&running&several&logis;c&regressions&at&the&same&;me&
…'which'we'can'feed'into'another'logis,c'regression'func,on'

It"is"the"loss"func:on"
that"will"direct"what"
the"intermediate"
hidden"variables"should"
be,"so"as"to"do"a"good"
job"at"predic:ng"the"
targets"for"the"next"
layer,"etc."
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A&neural&network&&
=&running&several&logis;c&regressions&at&the&same&;me&

Before'we'know'it,'we'have'a'mul,layer'neural'network….'
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Matrix&nota;on&for&a&layer&

We'have''

'
'

In'matrix'nota,on'

'
'

where'f'is'applied'elementAwise:'

'

a1'

a2'

a3'

a1 = f (W11x1 +W12x2 +W13x3 + b1)
a2 = f (W21x1 +W22x2 +W23x3 + b2 )
etc.

z =Wx + b
a = f (z)

f ([z1, z2, z3]) = [ f (z1), f (z2 ), f (z3)]
38'
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NonIlineari;es&(f):&Why&they’re&needed&

•  Example: function approximation,  
e.g., regression or classification 
•  Without non-linearities, deep neural 

networks can’t do anything more than a 
linear transform 

•  Extra layers could just be compiled down 
into a single linear transform:  
W1'W2'x = Wx 

•  With more layers, they can approximate 
more complex functions! 
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A&more&powerful&window&classifier&

•  Revisi,ng''

•  Xwindow''='[''xmuseums'''''xin''''''''xParis'''''''''''xare''''''xamazing']'
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A&Single&Layer&Neural&Network&

•  A'single'layer'is'a'combina,on'of'a'linear'layer'
and'a'nonlinearity:'

•  The'neural'ac,va,ons'a"can'then'
be'used'to'compute'some'func,on'

•  For'instance,'a'sopmax'probability''or'an'
unnormalized'score'or'a'we'care'about:'
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Summary:&FeedIforward&Computa;on&

42'

Compu,ng'a'window’s'score'with'a'3Alayer'neural'
net:'s"="score(museums'in'Paris'are'amazing')'

Xwindow''='[''xmuseums'''''xin''''''''xParis'''''''''''xare''''''xamazing']'



Next&lecture:&

4/8/15'Richard'Socher'43'

Training'a'windowAbased'neural'network.'

'

Taking'more'deeper&deriva;ves&!'Backprop&

&

Then'we'have'all'the'basic'tools'in'place'to'learn'about'
more'complex'models':)'

&



Overview'Today:'

•  Project(Ideas(

•  From(one(to(mul2(layer(neural(network!(

•  Max9Margin(loss(and(backprop(
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Class'Project'

•  Most(important((40%)(and(las2ng(result(of(the(class(

•  PSet(3(a(liMle(easier(to(have(more(2me(

•  Start(early(and(clearly(define(your(task(and(dataset(

•  Project(types:(
1.  Apply(exis2ng(neural(network(model(to(a(new(task(

2.  Come(up(with(a(new(neural(network(model(
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Class'Project:'Apply'Exis;ng'NNets'to'Tasks'

1.  Define(Task:((
•  Example:(Summariza;on'

2.  Define(Dataset(
1.  Search(for(academic(datasets((

•  They(already(have(baselines(

•  E.g.:(Document(Understanding(Conference((DUC)((

2.  Define(your(own((harder,(need(more(new(baselines)(

•  If(you’re(a(graduate(student:(connect(to(your(research(

•  Summariza2on,(Wikipedia:(Intro(paragraph(and(rest(of(large(ar2cle(

•  Be(crea2ve:(TwiMer,(Blogs,(News(
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Class'Project:'Apply'Exis;ng'NNets'to'Tasks'

3.  Define(your(metric(

•  Search(online(for(well(established(metrics(on(this(task(

•  Summariza2on:(Rouge((Recall9Oriented(Understudy(for(

Gis2ng(Evalua2on)(which(defines(n9gram(overlap(to(human(

summaries(

4.  Split(your(dataset!(
•  Train/Dev/Test(

•  Academic(dataset(o`en(come(pre9split(

•  Don’t(look(at(the(test(split(un2l(~1(week(before(deadline!(
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Class'Project:'Apply'Exis;ng'NNets'to'Tasks'

5.  Establish(a(baseline(
•  Implement(the(simplest(model((o`en(logis2c(regression(on(

unigrams(and(bigrams)(first(

•  Compute(metrics(on(train(AND(dev(

•  Analyze(errors(

•  If(metrics(are(amazing(and(no(errors:((
done,(problem(was(too(easy,(restart(:)((

6.  Implement(exis2ng(neural(net(model((

•  Compute(metric(on(train(and(dev(

•  Analyze(output(and(errors(

•  Minimum(bar(for(this(class(
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Class'Project:'Apply'Exis;ng'NNets'to'Tasks'

7.  Always(be(close(to(your(data!(
•  Visualize(the(dataset(
•  Collect(summary(sta2s2cs(
•  Look(at(errors(
•  Analyze(how(different(hyperparameters(affect(performance(

8.  Try(out(different(model(variants(
•  Soon(you(will(have(more(op2ons(
•  Word(vector(averaging(model((neural(bag(of(words)(
•  Fixed(window(neural(model(
•  Recurrent(neural(network(
•  Recursive(neural(network(
•  Convolu2onal(neural(network(
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Class'Project:'A'New'Model'DD'Advanced'Op;on'

•  Do(all(other(steps(first((Start(early!)(
•  Gain(intui2on(of(why(exis2ng(models(are(flawed(

•  Talk(to(other(researchers,(come(to(my(office(hours(a(lot(
•  Implement(new(models(and(iterate(quickly(over(ideas(
•  Set(up(efficient(experimental(framework(
•  Build(simpler(new(models(first(
•  Example(Summariza2on:(

• Average(word(vectors(per(paragraph,(then(greedy(search(
•  Implement(language(model(or(autoencoder((introduced(later)(
• Stretch(goal(for(poten2al(paper:(Generate(summary!(
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Project'Ideas'

•  Summariza2on(
•  NER,(like(PSet(2(but(with(larger(data(

Natural(Language(Processing((almost)(from(Scratch,(Ronan(Collobert,(Jason(Weston,(Leon(BoMou,(Michael(
Karlen,(Koray(Kavukcuoglu,(Pavel(Kuksa,(hMp://arxiv.org/abs/1103.0398(

•  Simple(ques2on(answering,
A(Neural(Network(for(Factoid(Ques2on(Answering(over(Paragraphs,(Mohit(Iyyer,(Jordan(Boyd9Graber,(
Leonardo(Claudino,(Richard(Socher(and(Hal(Daumé(III((EMNLP'2014)(

•  Image(to(text(mapping(or(genera2on,(
Grounded(Composi2onal(Seman2cs(for(Finding(and(Describing(Images(with(Sentences,(Richard(Socher,(Andrej(
Karpathy,(Quoc(V.(Le,(Christopher(D.(Manning,(Andrew(Y.(Ng.((TACL'2014)(
or(
Deep(Visual9Seman2c(Alignments(for(Genera2ng(Image(Descrip2ons,(Andrej(Karpathy,(Li(Fei9Fei(

•  En2ty(level(sen2ment(
•  Use(DL(to(solve(an(NLP(challenge(on(kaggle,(

Develop(a(scoring(algorithm(for(student9wriMen(short9answer(responses,(hMps://www.kaggle.com/c/asap9sas(
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Default'project:'sen;ment'classifica;on'

•  Sen2ment(on(movie(reviews:(hMp://nlp.stanford.edu/sen2ment/(
•  Lots(of(deep(learning(baselines(and(methods(have(been(tried(
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A'more'powerful'window'classifier'

•  Revisi2ng((

•  Xwindow((=([((xmuseums(((((xin((((((((xParis(((((((((((xare((((((xamazing(](

•  Assume(we(want(to(classify(whether(the(center(word(is(a(
loca2on(or(not(
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A'Single'Layer'Neural'Network'

•  A(single(layer(is(a(combina2on(of(a(linear(layer(
and(a(nonlinearity:(

•  The(neural(ac2va2ons(a"can(then(
be(used(to(compute(some(func2on(

•  For(instance,(an(unnormalized(score(or(a(
so`max(probability(we(care(about:(

11(



Summary:'FeedDforward'Computa;on'

12(

Compu2ng(a(window’s(score(with(a(39layer(neural(
net:(s"="score(museums(in(Paris(are(amazing()(

Xwindow((=([((xmuseums(((((xin((((((((xParis(((((((((((xare((((((xamazing(](



Main'intui;on'for'extra'layer'

13(

The(layer(learns(non9linear(
(interac2ons(between(the((
input(word(vectors.(
(

Example:(
only(if(“museums”(is(
first(vector(should(
it(maMer(that(“in”(is(
in(the(second(posi2on(

Xwindow((=([((xmuseums(((((xin((((((((xParis(((((((((((xare((((((xamazing(](



Summary:'FeedDforward'Computa;on'

•  s((=(score(museums(in(Paris(are(amazing)(
•  sc(=(score(Not(all(museums(in(Paris)(

(

•  Idea(for(training(objec2ve:(make(score(of(true(window(
larger(and(corrupt(window’s(score(lower((un2l(they’re(
good(enough):(minimize(

•  This(is(con2nuous,(can(perform(SGD(

14(



MaxDmargin'Objec;ve'func;on'

•  Objec2ve(for(a(single(window:(

•  Each(window(with(a(loca2on(at(its(center(should(have(a(
score(+1(higher(than(any(window(without(a(loca2on(at(
its(center(

•  ((((((xxx((|!((((1(((("|(((ooo((

•  For(full(objec2ve(func2on:(Sum(over(all(training(
windows(

15(



Training'with'Backpropaga;on'

Assuming(cost(J"is(>(0,((
compute(the(deriva2ves(of(s(and(sc(wrt(all(the(
involved(variables:(U,"W,"b,"x"

(
16(



Training'with'Backpropaga;on'

•  Let’s(consider(the(deriva2ve(of(a(single(weight(Wij"

•  This(only(appears(inside(ai"

•  For(example:(W23(is(only((
used(to(compute(a2(

x1" """"""""x2(((((((((((((((((x3""""""""""""+1(
"

a1" """"""""a2"

s""" U2(

W23(

17(
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Training'with'Backpropaga;on'

Deriva2ve(of(weight(Wij:(

18(

x1" """"""""x2(((((((((((((((((x3""""""""""""+1(
"

a1" """"""""a2"

s""" U2(

W23(



where((((((((((((((((((((((((((((((((((((((((((((((((((for(logis2c(f(

Training'with'Backpropaga;on'

Deriva2ve(of(single(weight(Wij":(

Local(error(
signal(

Local(input(
signal(

19(

x1" """"""""x2(((((((((((((((((x3""""""""""""+1(
"

a1" """"""""a2"

s""" U2(

W23(



•  We(want(all(combina2ons(of(
i"="1,(2"and"j"="1,(2,(3("(?(

•  Solu2on:(Outer(product:(
where((((((((((((((((((is(the((
“responsibility”(or(error(message(
coming(from(each(ac2va2on(a"

Training'with'Backpropaga;on'

•  From(single(weight(Wij(to(full(W:(

20(

x1" """"""""x2(((((((((((((((((x3""""""""""""+1(
"

a1" """"""""a2"

s""" U2(

W23(

S(



Training'with'Backpropaga;on'

•  For(biases(b,(we(get:(

21(

x1" """"""""x2(((((((((((((((((x3""""""""""""+1(
"

a1" """"""""a2"

s""" U2(

W23(



Training'with'Backpropaga;on'

22(

That’s(almost(backpropaga2on(
It’s(simply(taking(deriva2ves(and(using(the(chain(rule!(

(

Remaining(trick:(we(can(reDuse'deriva2ves(computed(for(
higher(layers(in(compu2ng(deriva2ves(for(lower(layers!(

(

Example:(last(deriva2ves(of(model,(the(word(vectors(in(x(



Training'with'Backpropaga;on'

•  Take(deriva2ve(of(score(with(
respect(to(single(element(of(
word(vector(

•  Now,(we(cannot(just(take(
into(considera2on(one(ai(
because(each(xj(is(connected(
to(all(the(neurons(above(and(
hence(xj(influences(the(
overall(score(through(all(of(
these,(hence:(

Re9used(part(of(previous(deriva2ve(23(



Training'with'Backpropaga;on'

•  With((((((((((((((((((((((((,what(is(the(full(gradient?("(

•  Observa2ons:((The(error(message(±(that(arrives(at(a(hidden(
layer(has(the(same(dimensionality(as(that(hidden(layer(

24(



PuQng'all'gradients'together:'

•  Remember:(Full(objec2ve(func2on(for(each(window(was:((

•  For(example:(gradient(for(U:(

25(



Two'layer'neural'nets'and'full'backprop'

•  Let’s(look(at(a(2(layer(neural(network(
•  Same(window(defini2on(for(x(
•  Same(scoring(func2on((
•  2(hidden(layers(

4/13/15(Richard(Socher(Lecture(1,(Slide(26(

W(1)(

W(2)(

a(1)(

a(2)(

x(

U(
s(



Two'layer'neural'nets'and'full'backprop'

•  Fully(wriMen(out(as(one(func2on:(

•  Same(deriva2on(as(before(for(W(2)((now(si|ng(on(a(1))(

4/13/15(Richard(Socher(Lecture(1,(Slide(27(

W(1)(

W(2)(

S(

a(1)(

a(2)(



Two'layer'neural'nets'and'full'backprop'

•  Same(deriva2on(as(before(for(W(2)(:(

•  In(matrix(nota2on:(
(
(
where(((((((((((((((((((((((((((((((((((((((((and(± is(the(element9wise(product(((

( ( ( (((((also(called(Hadamard(product 

•  Last(missing(piece(for(understanding((general(backprop:(

4/13/15(Richard(Socher(Lecture(1,(Slide(28(



Two'layer'neural'nets'and'full'backprop'

•  Last(missing(piece:((

•  What’s(the(last(layer’s(error(message(±(1)?(

•  Similar(deriva2on(to(single(layer(model(
•  Main(difference,(we(have(both((((((((((((((((((((and(((((((((((((((because(

unlike(x,(W(1)(is(inside(another(func2on("(chain(rule(

4/13/15(Richard(Socher(Lecture(1,(Slide(29(



Two'layer'neural'nets'and'full'backprop'

•  Difference(for(±(:(we(have(both((((((((((((((((((((and(((((((((((((((because(
unlike(x,(W(1)(is(inside(another(func2on("(chain(rule(

•  Pu|ng(it(all(together:(((

4/13/15(Richard(Socher(Lecture(1,(Slide(30(

The second derivative in eq. 28 for output units is simply
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We adopt standard notation and introduce the error � related to an output unit:
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So far, we only computed errors for output units, now we will derive �’s for normal hidden units and
show how these errors are backpropagated to compute weight derivatives of lower levels. We will start with
second to top layer weights from which a generalization to arbitrarily deep layers will become obvious.
Similar to eq. 28, we start with the error derivative:

@E

@W

(n
l

�2)
ij

=
X

n

@E

n

@a

(n
l

)
| {z }
�

(n
l

)

@a

(n
l

)

@W

(n
l

�2)
ij

+ �W

(n
l

�2)
ji

. (48)

Now,
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where we used in the first line that the top layer is linear. This is a very detailed account of essentially
just the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamard
product �):

�

(l) =
⇣
(W (l))T �(l+1)

⌘
� f 0(z(l)), (59)
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Two'layer'neural'nets'and'full'backprop'

•  Last(missing(piece:((

•  In(general(for(any(matrix(W(l)(at(internal((
layer(l(and(any(error(with(regulariza2on(ER(
all(backprop(in(standard(mul2layer((
neural(networks(boils(down(to(2(equa2ons:(

•  Top(and(boMom(layers(have(simpler(±((
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The second derivative in eq. 28 for output units is simply
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We adopt standard notation and introduce the error � related to an output unit:
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So far, we only computed errors for output units, now we will derive �’s for normal hidden units and
show how these errors are backpropagated to compute weight derivatives of lower levels. We will start with
second to top layer weights from which a generalization to arbitrarily deep layers will become obvious.
Similar to eq. 28, we start with the error derivative:
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where we used in the first line that the top layer is linear. This is a very detailed account of essentially
just the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamard
product �):

�

(l) =
⇣
(W (l))T �(l+1)

⌘
� f 0(z(l)), (59)
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where the sigmoid derivative from eq. 14 gives f 0(z(l)) = (1� a

(l))a(l). Using that definition, we get the
hidden layer backprop derivatives:
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Which in one simplified vector notation becomes:
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In summary, the backprop procedure consists of four steps:

1. Apply an input x

n

and forward propagate it through the network to get the hidden and output
activations using eq. 18.

2. Evaluate �

(n
l

) for output units using eq. 42.

3. Backpropagate the �’s to obtain a �

(l) for each hidden layer in the network using eq. 59.

4. Evaluate the required derivatives with eq. 62 and update all the weights using an optimization
procedure such as conjugate gradient or L-BFGS. CG seems to be faster and work better when
using mini-batches of training data to estimate the derivatives.

If you have any further questions or found errors, please send an email to richard@socher.org

5 Recursive Neural Networks

Same as backprop in previous section but splitting error derivatives and noting that the derivatives of the
same W at each node can all be added up. Lastly, the delta’s from the parent node and possible delta’s
from a softmax classifier at each node are just added.
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Backpropaga;on'(High'Level)'

32(



BackDProp'

•  Compute(gradient(of(example9wise(loss(wrt(
parameters((

•  Simply(applying(the(deriva2ve(chain(rule(wisely(

•  If(compu2ng(the(loss(example,(parameters)(is(O(n)(
computa2on,(then(so(is(compu2ng(the(gradient(

33(



Simple Chain Rule'
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Multiple Paths Chain Rule 
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Mul;ple'Paths'Chain'Rule'D'General 

…'
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Chain Rule in Flow Graph 

…'

…'

…'

Flow(graph:(any(directed(acyclic(graph(
(node(=(computa2on(result(
(arc(=(computa2on(dependency(

(
(((((((((((((((((((((((((((( ((=(successors(of((
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Back-Prop in Multi-Layer Net 

…'

…'

38(

h = sigmoid(Vx)



Back-Prop in General Flow Graph 

…'

…'

…'

(((((((((((((((((((((((((((( ((=(successors(of((

1.  Fprop:(visit(nodes(in(topo9sort(order((
9  Compute(value(of(node(given(predecessors(

2.  Bprop:(
(9(ini2alize(output(gradient(=(1((
(9(visit(nodes(in(reverse(order:(

(Compute(gradient(wrt(each(node(using((
(((((( (gradient(wrt(successors(

Single(scalar(output(
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Automatic Differentiation 

•  The(gradient(computa2on(can(
be(automa;cally'inferred'from(
the(symbolic(expression(of(the(
fprop.(

•  Each(node(type(needs(to(know(
how(to(compute(its(output(and(
how(to(compute(the(gradient(
wrt(its(inputs(given(the(
gradient(wrt(its(output.(

•  Easy(and(fast(prototyping(

40(
…
'
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Summary'
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•  Congrats!(

•  You(survived(the(hardest(part(of(this(class.(

•  Everything(else(from(now(on(is(just(more(matrix(
mul2plica2ons(and(backprop(:)(

•  Next(up:((
•  Tips(and(Tricks((

•  Recurrent(Neural(Networks(


