
Support Vector
Machines
Jeremy Irvin and
Daniel Spokoyny

Created from Andrew Ng’s
Stanford CS229 Notes

● Remember logistic regression, where
is modeled by .

● We predict ‘1’ if and only if , or

equivalently, .

● So for a positive training example, the larger ,

the more ‘confident’ we are that the label is 1.

● Intuitively, our model is a good fit if we have

learned a such that when
and when .

Functional Margin Intuition

● Below, x’s represent positive training examples
and o’s represent negative training examples, and
the line is (the decision boundary, or
separating hyperplane):

Geometric Margin Intuition

● Notice A is very far from the
decision boundary - we should
be very confident about our
prediction for this point.

● However, C is very close - a
small change to the boundary
could change the prediction
here.

● So we should be confident

about our predictions for points
far from the decision boundary.

● Intuitively, our model is a good

fit the data is far from the
learned decision boundary
(high confidence).

Geometric Margin Intuition

● We will be discussing a binary classification
problem (now with) using a linear
classifier with parameters w, b:

● The g above is not the sigmoid function from

before - it is the function:

● Notice that this classifier will directly predict
either 1 or -1, unlike logistic regression which
estimated to probability of y being 1.

Change of Notation

● Given a training example , the functional
margin of is

● If , then the functional margin is large

when is a large positive number.

● If , then the functional margin is large
when is a large negative number.

● Also, our prediction is correct if .

● So a large functional margin means a confident

and correct prediction.

Functional Margin

● There is one big problem with the functional
margin that makes it a poor measure of
confidence!

● Due to our choice of g, if we replace w with 2w

and b with 2b, then

and thus our prediction would not change
at all.

● But this means we can make the functional
margin arbitrarily large!

Functional Margin

● Maybe we should impose some normalization
condition, like (replace with

 when computing the
functional margin).

● Given a training set ,

we define the functional margin of the training
set to be the smallest functional margin of each
individual training example, ie,

Functional Margin

● The separating hyperplane
corresponding to (w,b) is shown.

● The vector w is shown as well - it is

orthogonal to the decision boundary
- coincidence?

● A represents the input with label

 .

● The distance to the decision

boundary is the length of the line
segment AB.

● How can we find ?

Geometric Margin

● First note that

● But B lies on the decision

boundary, so it satisfies
 . Therefore

and solving for yields

Geometric Margin

● We can do the same thing for
negative training examples to
find the more general
definition

● If then this is the same
as the functional margin!

● Notice that this margin is

invariant to scaling of the
parameters.

Geometric Margin

● This means we can choose any scaling constraint
without changing the value of the margin!

● Given a training set ,

we define the functional margin of the training
set to be the smallest functional margin of each
individual training example, ie,

Geometric Margin

● Given a training set, we hope to find a decision
boundary which maximizes the (geometric)
margin, since this would imply a confident set of
predictions and thus a good fit to the data.

● Suppose that our training set is linearly separable

(we are able to separate the positive and negative
examples using a hyperplane).

● How do we find the separating hyperplane which

maximizes the geometric margin?

Maximal Margin Classifier

● Formally, the problem formulation becomes

● We want to maximize subject to every training
example having functional margin greater than or equal
to .

● Notice that ensures that the functional margin

equals the geometric margin, so this optimization
problem results in parameters (w,b) which maximize the
geometric margin of the training set.

Maximal Margin Classifier

● But solving this problem is difficult due to the non-convex
 constraint - we cannot use any standard

optimization software to solve the problem in its current
form.

● We can reformulate this problem as

● We want to maximize subject to every training

example having functional margin greater than .

● Since geometric and functional margins are related by

 , this yields the same result.

Maximal Margin Classifier

● But again solving this problem is difficult due to the non-
convex objective function - still not standard software can
solve the optimization problem in this form.

● Remember that we can add any constraint on w and b

without changing the geometric margin!

● We will introduce the scaling constraint that the

functional margin of w,b of the training set must be 1, ie:

● Because multiplying w and b by some constant results in
the functional margin multiplied by the same constant,
this is just a scaling constraint - it can be satisfied by
rescaling w,b.

Maximal Margin Classifier

● Plugging this into the reformulated problem above and
noticing that maximizing is the same
thing as minimizing , we have the optimization
problem:

● This has a convex quadratic objective function and linear
constraints - it can be efficiently solved using quadratic
programming software!

● The solution yields the optimal (maximal) margin
classifier.

Maximal Margin Classifier

● We will not discuss the details of Lagrange duality - but it
essentially allows us to reformulate this optimization
problem in its dual form.

● Doing so will allow us to use kernels for efficiency in high

dimensional spaces, as well as efficiency in general -
much better than generic quadratic programming
software.

● **Kernels also allow us to deal with data that is not
linearly separable.**

● If you would like to learn more about Langrang Duality,

the details can be found in Andrew Ng’s CS229 notes!

Lagrange Duality

● Using Lagrange Duality, we can once again
reformulate our optimization problem.

● Consider the figure below. The solid line is the
maximum margin separating hyperplane:

SVM Intuition

● The three points closest to the decision boundary
(on the dashed lines) are called the support
vectors.

● Using Lagrange Duality, you can show that the
number of support vectors can be much smaller
than the training set.

SVM Intuition

● Again using Lagrange Duality, the solution to the
following problem

can be used to solve the original problem.

● Moreover, this problem is written only in terms of inner
products between input feature vectors.

● We can exploit this property to apply kernels to the
classification problem. The resulting algorithm, called
support vector machines, allows for efficient learning in
very high dimensional spaces.

SVM Intuition

● Moreover, we notice that

● So when making a prediction for x, we only need to
compute inner products between x and the support
vectors, which we know to be small in number.

SVM Intuition

● Recall the initial linear regression problem.

● We had a few attributes given, like the number

of ants x, the size of the house y, etc, and we’re
trying to make a prediction about the house.

● We could have used slightly different variations

of our features instead - - and
learned a much more complex function using
least squares as before.

Kernels

● The original (raw) input is called the attributes,
and the attributes mapped to a new set of
quantities passed to the learning algorithm are
called the features.

● Let denote the feature mapping, which maps
from the attributes to the features.

● For example,

Kernels

● In any learning algorithm, rather than directly
inputting our input attributes, we may want to
instead learn using the features.

● We can do this easily by replacing the attributes

x everywhere with .

● Since the SVM algorithm can be written entirely

in terms of inner products, we can replace all of
the inner product of attribute vectors with inner
products of feature vectors.

Kernels

● We define the Kernel to be

● So we could replace with and the
algorithm would learn using the features rather
than the attributes.

● So given , we can compute by finding

 and and taking their inner product.

● However, it is often very inexpensive to calculate

directly from the attributes when
may be very expensive to calculate (high-dim).

Kernels

● In these situations, by using an efficient way to
calculate the kernel , the algorithm (SVM)
can learn in high dimensional feature space (the
range of), without ever explicitly finding or
representing the vectors .

● Example:

Kernels

● Thus we can write where is
defined by (for n=3):

Kernels

● Intuitively, if and are close together, we
might expect to be large.

● If they are ‘far’’ apart (say orthogonal) then

 will be small.

● So we can think of as a similarity

measure of and (or of x and z).

● Suppose we find some function that we

think is a good measure of similarity of x and z.

Kernels

● Maybe we choose

● This measure is close to 1 when x and z are close,
and close to 0 when they are far apart.

● Can we use this K as the kernel in an SVM?

● Yes! It is called the Gaussian kernel, and

corresponds to an infinite dimensional feature
mapping .

Kernels

● How do we tell is a function K is a valid kernel
(ie, that there exists some feature mapping
such that)?

● Suppose for now that K is a valid kernel, and

consider some finite set of m points (not
necessarily the training set) .

● Define a square m-by-m matrix K with

 . This is called the Kernel matrix.

Kernels

● If K is a valid kernel, then FIX

so K is symmetric.

● It can be easily shown that in fact K is positive
semidefinite.

● In fact, this is also a sufficient condition:

Kernels

● The SVM algorithm has thus far assumed the data
is linearly separable.

● Mapping data to a high dimensional feature

space via increases the likelihood the data is
separable, but this is not always the case.

● In some cases it is not clear whether finding a

separating hyperplane is what we want to do,
since it may be susceptible to outliers.

Regularization

● For example,

● Here, the outlier causes the decision boundary to
make a large rotation, causing the classifier to
have a much smaller margin.

Regularization

● So to make the algorithm work for non-linearly
separated datasets and simultaneously be less
sensitive to outliers, we reformulate our
optimization as:

Regularization

● The C*sum is called -regularization.

● Now, the training examples can have functional
margin less than 1, and if one has functional margin
 , then we pay the cost of the objective
function increased by .

● C controls the weighting between making the
term small and ensuring the examples have
functional margin at least 1.

Regularization

● Once again we can use Lagrange duality to
reformulate the problem in terms of only inner
products:

Regularization

● Consider solving the unconstrained optimization
problem:

● We’ve seen gradient ascent as one optimization
algorithm.

● Let’s consider coordinate ascent:

Coordinate Ascent

● In the innermost loop, we hold all variables except for
one fixed, and reoptimize W with respect to that one
variable.

● This algorithm reoptimizes the variables in order, but a
more sophisticated algorithm may choose other orderings
such as updating the variable which makes the largest
increase in W.

Coordinate Ascent

● Coordinate ascent is fairly efficient when W is in
a form that the ‘argmax’ in the inner loop can be
performed efficiently.

● Example of coordinate ascent:

Coordinate Ascent

● Recall the reformulation:

● Suppose we hold all but one variable fixed and
reoptimize with respect to that one variable. Can
we make progress?

● No! The last variables must be fixed as well:

SMO Algorithm

● Thus to update some of the variables, we must
update two simultaneously. This motivates the
SMO algorithm:

● This is a very efficient algorithm because the
update to the pair of variables can be computed
very efficiently. See the notes.

SMO Algorithm

What Just Happened?
● Maximal Margin Classifiers

● Kernels

● Regularization

● Coordinate Ascent and the SMO

Algorithm

