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● Remember logistic regression, where  
is modeled by     .

 
● We predict ‘1’ if and only if                    , or 

equivalently,                 .
 
● So for a positive training example, the larger        , 

the  more ‘confident’ we are that the label is 1.
 
● Intuitively, our model is a good fit if we have 

learned a     such that                      when               
and                       when              .

Functional Margin Intuition



● Below, x’s represent positive training examples 
and o’s represent negative training examples, and 
the line is                  (the decision boundary, or 
separating hyperplane):

Geometric Margin Intuition



● Notice A is very far from the 
decision boundary - we should 
be very confident about our 
prediction for this point.

● However, C is very close - a 
small change to the boundary 
could change the prediction 
here.

 
● So we should be confident 

about our predictions for points 
far from the decision boundary.

 
● Intuitively, our model is a good 

fit the data is far from the 
learned decision boundary 
(high confidence).

Geometric Margin Intuition



● We will be discussing a binary classification 
problem (now with          ) using a linear 
classifier with parameters w, b: 

  
● The g above is not the sigmoid function from 

before - it is the function:   

● Notice that this classifier will directly predict 
either 1 or -1, unlike logistic regression which 
estimated to probability of y being 1.

Change of Notation



● Given a training example                 , the functional 
margin of             is 

  
 
● If                , then the functional margin is large 

when   is a large positive number.

● If                 , then the functional margin is large 
when                      is a large negative number.

 
● Also, our prediction is correct if                                 .
 
● So a large functional margin means a confident 

and correct prediction.

Functional Margin



● There is one big problem with the functional 
margin that makes it a poor measure of 
confidence!

 
● Due to our choice of g, if we replace w with 2w 

and b with 2b, then
  
 

and thus our prediction               would not change 
at all.

● But this means we can make the functional 
margin arbitrarily large!

Functional Margin



● Maybe we should impose some normalization 
condition, like                     (replace            with 

   when computing the 
functional margin).

 
● Given a training set                                                   , 

we define the functional margin of the training 
set to be the smallest functional margin of each 
individual training example, ie,

Functional Margin



● The separating hyperplane 
corresponding to (w,b) is shown.

 
● The vector w is shown as well - it is 

orthogonal to the decision boundary 
- coincidence?

 
● A represents the input        with label 

     . 
 
● The distance       to the decision 

boundary is the length of the line 
segment AB.

 
● How can we find       ?

Geometric Margin



● First note that
  
 
 
● But B lies on the decision 

boundary, so it satisfies                         
   . Therefore

 
 
 

and solving for       yields 

Geometric Margin



● We can do the same thing for 
negative training examples to 
find the more general 
definition

● If                  then this is the same 
as the functional margin!

 
● Notice that this margin is 

invariant to scaling of the 
parameters.

Geometric Margin



● This means we can choose any scaling constraint 
without changing the value of the margin!

 
● Given a training set                                                   , 

we define the functional margin of the training 
set to be the smallest functional margin of each 
individual training example, ie,

Geometric Margin



● Given a training set, we hope to find a decision 
boundary which maximizes the (geometric) 
margin, since this would imply a confident set of 
predictions and thus a good fit to the data.

 
● Suppose that our training set is linearly separable 

(we are able to separate the positive and negative 
examples using a hyperplane).

 
● How do we find the separating hyperplane which 

maximizes the geometric margin?

Maximal Margin Classifier



● Formally, the problem formulation becomes

● We want to maximize     subject to every training 
example having functional margin greater than or equal 
to     .

 
● Notice that               ensures that the functional margin 

equals the geometric margin, so this optimization 
problem results in parameters (w,b) which maximize the 
geometric margin of the training set.

Maximal Margin Classifier



● But solving this problem is difficult due to the non-convex   
         constraint - we cannot use any standard 

optimization software to solve the problem in its current 
form.

 
● We can reformulate this problem as
  
 
 
 
● We want to maximize             subject to every training 

example having functional margin greater than    .
 
● Since geometric and functional margins are related by 

 , this yields the same result.

Maximal Margin Classifier



● But again solving this problem is difficult due to the non-
convex objective function - still not standard software can 
solve the optimization problem in this form.

 
● Remember that we can add any constraint on w and b 

without changing the geometric margin!
 
● We will introduce the scaling constraint that the 

functional margin of w,b of the training set must be 1, ie: 

● Because multiplying w and b by some constant results in 
the functional margin multiplied by the same constant, 
this is just a scaling constraint - it can be satisfied by 
rescaling w,b.

Maximal Margin Classifier



● Plugging this into the reformulated problem above and 
noticing that maximizing                                 is the same 
thing as minimizing          , we have the optimization 
problem:

● This has a convex quadratic objective function and linear 
constraints - it can be efficiently solved using quadratic 
programming software!

● The solution yields the optimal (maximal) margin 
classifier.

Maximal Margin Classifier



● We will not discuss the details of Lagrange duality - but it 
essentially allows us to reformulate this optimization 
problem in its dual form. 

 
● Doing so will allow us to use kernels for efficiency in high 

dimensional spaces, as well as efficiency in general - 
much better than generic quadratic programming 
software. 

● **Kernels also allow us to deal with data that is not 
linearly separable.**

 
● If you would like to learn more about Langrang Duality, 

the details can be found in Andrew Ng’s CS229 notes!

Lagrange Duality



● Using Lagrange Duality, we can once again 
reformulate our optimization problem.

● Consider the figure below. The solid line is the 
maximum margin separating hyperplane:

SVM Intuition



● The three points closest to the decision boundary 
(on the dashed lines) are called the support 
vectors.

● Using Lagrange Duality, you can show that the 
number of support vectors can be much smaller 
than the training set. 

SVM Intuition



● Again using Lagrange Duality, the solution to the 
following problem

can be used to solve the original problem.

● Moreover, this problem is written only in terms of inner 
products between input feature vectors.

● We can exploit this property to apply kernels to the 
classification problem. The resulting algorithm, called 
support vector machines, allows for efficient learning in 
very high dimensional spaces.

SVM Intuition



● Moreover, we notice that

● So when making a prediction for x, we only need to 
compute inner products between x and the support 
vectors, which we know to be small in number.

SVM Intuition



● Recall the initial linear regression problem.
 
● We had a few attributes given, like the number 

of ants x, the size of the house y, etc, and we’re 
trying to make a prediction about the house.

 
● We could have used slightly different variations 

of our features instead -                             - and 
learned a much more complex function using 
least squares as before.

Kernels



● The original (raw) input is called the attributes, 
and the attributes mapped to a new set of 
quantities passed to the learning algorithm are 
called the features.

● Let      denote the feature mapping, which maps 
from the attributes to the features. 

 
● For example,

Kernels



● In any learning algorithm, rather than directly 
inputting our input attributes, we may want to 
instead learn using the features. 

 
● We can do this easily by replacing the attributes 

x everywhere with         .
 
● Since the SVM algorithm can be written entirely 

in terms of inner products, we can replace all of 
the inner product of attribute vectors with inner 
products of feature vectors.

Kernels



● We define the Kernel to be 

● So we could replace           with                and the 
algorithm would learn using the features rather 
than the attributes.

 
● So given     , we can compute                by finding          

    and          and taking their inner product.
 
● However, it is often very inexpensive to calculate  

directly from the attributes when          
may be very expensive to calculate (high-dim).

Kernels



● In these situations, by using an efficient way to 
calculate the kernel              , the algorithm (SVM) 
can learn in high dimensional feature space (the 
range of    ), without ever explicitly finding or 
representing the vectors         .

 
● Example: 

Kernels



● Thus we can write                                     where     is 
defined by (for n=3):  

Kernels



● Intuitively, if          and          are close together, we 
might expect                                    to be large. 

 
● If they are ‘far’’ apart (say orthogonal) then 

    will be small.
 
● So we can think of               as a similarity 

measure of          and           (or of x and z).
 
● Suppose we find some function               that we 

think is a good measure of similarity of x and z.

Kernels



● Maybe we choose

● This measure is close to 1 when x and z are close, 
and close to 0 when they are far apart. 

 
● Can we use this K as the kernel in an SVM?
 
● Yes! It is called the Gaussian kernel, and 

corresponds to an infinite dimensional feature 
mapping    .

Kernels



● How do we tell is a function K is a valid kernel 
(ie, that there exists some feature mapping     
such that                                   )?

 
● Suppose for now that K is a valid kernel, and 

consider some finite set of m points (not 
necessarily the training set)                         .

 
● Define a square m-by-m matrix K with  

    . This is called the Kernel matrix.

Kernels



● If K is a valid kernel, then FIX

so K is symmetric.

● It can be easily shown that in fact K is positive 
semidefinite.

 
● In fact, this is also a sufficient condition:

Kernels



● The SVM algorithm has thus far assumed the data 
is linearly separable.

 
● Mapping data to a high dimensional feature 

space via     increases the likelihood the data is 
separable, but this is not always the case.

 
● In some cases it is not clear whether finding a 

separating hyperplane is what we want to do, 
since it may be susceptible to outliers.

Regularization



● For example,

● Here, the outlier causes the decision boundary to 
make a large rotation, causing the classifier to 
have a much smaller margin.

Regularization



● So to make the algorithm work for non-linearly 
separated datasets and simultaneously be less 
sensitive to outliers, we reformulate our 
optimization as:

Regularization



● The C*sum is called     -regularization.

● Now, the training examples can have functional 
margin less than 1, and if one has functional margin                     
                     , then we pay the cost of the objective 
function increased by        .

● C controls the weighting between making the      
term small and ensuring the examples have 
functional margin at least 1. 

Regularization



● Once again we can use Lagrange duality to 
reformulate the problem in terms of only inner 
products:

Regularization



● Consider solving the unconstrained optimization 
problem:

● We’ve seen gradient ascent as one optimization 
algorithm. 

 
● Let’s consider coordinate ascent:

Coordinate Ascent



● In the innermost loop, we hold all variables except for 
one fixed, and reoptimize W with respect to that one 
variable.

● This algorithm reoptimizes the variables in order, but a 
more sophisticated algorithm may choose other orderings 
such as updating the variable which makes the largest 
increase in W.

Coordinate Ascent



● Coordinate ascent is fairly efficient when W is in 
a form that the ‘argmax’ in the inner loop can be 
performed efficiently.

 
● Example of coordinate ascent:

Coordinate Ascent



● Recall the reformulation:

● Suppose we hold all but one variable fixed and 
reoptimize with respect to that one variable. Can 
we make progress?

 
● No! The last variables must be fixed as well:

SMO Algorithm



● Thus to update some of the variables, we must 
update two simultaneously. This motivates the 
SMO algorithm:

● This is a very efficient algorithm because the 
update to the pair of variables can be computed 
very efficiently. See the notes.

SMO Algorithm



What Just Happened?
● Maximal Margin Classifiers
 
● Kernels
 
● Regularization 
 
● Coordinate Ascent and the SMO 

Algorithm
 


