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● Just as we did in logistic regression, we can learn  
a linear decision boundary to perform binary 
classification. 

 

● It seems like a linear assumption is too rigid. Or 
are errors on our predictions unavoidable?

Two Basic Classifiers



● The errors that we make by assuming a linear 
decision boundary of course depends on the 
specific training set we are using:
○ in none of these models have we specified 

where the data itself comes from.
 

● Let’s examine two scenarios. The training data in 
each class were generated from:
○ bivariate Gaussians with uncorrelated 

components and distinct means.
○ a mixture of 10 low-variance Gaussians, with 

the means themselves distributed as Gaussian.

Two Basic Classifiers



● Think of a mixture of Gaussians in the 
“generative” sense:
○ Generate a discrete variable that determines 

which of the 10 distributions to generate 
(sample) from

○ Then generate from that chosen distribution
 

● If the data comes from one Gaussian per class, 
linear decision boundary is optimal.

 
● For tightly clustered Gaussians, a linear decision 

boundary is not optimal - optimal will most likely 
be linear and disjoint (and therefore difficult to 
learn).

Two Basic Classifiers



● Can do nearest neighbor methods using majority 
vote (15-NN): 

 
 
 
 
 
 
 
 

● Seems much better - but in fact it’s not necessarily 
a good model. Why?

k-Nearest Neighbors



● This is the decision boundary generated using 1-
NN: 

 
 
 
 
 
 
 
 

● This is a perfect decision boundary for our 
training set. Why not always use this?

k-Nearest Neighbors



● A linear decision boundary is smooth and stable 
(small changes to our training set won’t affect the 
line), but it relies heavily on the linearity 
assumption.
○ Low variance, high bias

● k-NN doesn’t make any assumptions about the 
data, and can adapt to it well, but any local region 
is very susceptible to any change in the training 
set.
○ High variance, low bias

Bias and Variance



● Let’s generalize our original learning 
formulation:

 
● Let      denote a random variable which takes on 

the input values in our training set, and        
a random variable which takes on output 

values in our training set.

● We want to find     to minimize the value                
for some loss function    (over the inputs).

 
● Put another way, we want to discover the joint 

distribution of the random variables to find the 
optimal    .

Statistical Decision Theory



● Take the loss function (as before) to be squared 
loss. Call     the training set. Then the expected 
prediction error for     over the training set     is 

 
 
● We hope to minimize this error. Turns out we can 

minimize it pointwise (ie, minimize it for each 
training example individually):

 
 
● This is known as the regression function.
● So the best prediction of      at                  is the 

conditional mean when “best” is measured by 
average squared error.

Statistical Decision Theory



● k-NN in fact attempts to estimate this conditional 
mean.

 
● At any input    , the k-NN model yields 
 
 

Two estimations:

● The expectation is approximated by averaging 
over sample data.

● Conditioning at a single point is relaxed to 
condition on a region close to the point.

Statistical Decision Theory



● As the size N of our training set increases, these 
estimations become more and more accurate.

 
● The points in a neighborhood of     are close to    .
 
● As the number of neighbors k increases, the 

average will stabilize.
 
● In fact, it can be shown that if                   with 

                  (the size of the training set increases 
much faster than the number of neighbors), then

Statistical Decision Theory



● So it seems like we’ve found a universal approximator of 
this mean, and thus an optimal classifier in this general 
formulation.

 
● However, in practice, we often cannot get large enough 

samples for this approximation to yield good results.
 
● Additionally, if we know the structure of the data (such as 

linearity), models with this innate structure will be more 
stable (but this structure somehow needs to be discovered 
beforehand).

 
● Also, as the dimension of the input space becomes large, 

so does the k-NN neighborhood (the curse of 
dimensionality), causing the rate of convergence to 
greatly decrease.

Statistical Decision Theory



● Linear regression similarly approximates this conditional 
expectation by using the functional model assumption to 
pool over values of the input space.

● So least squares in this framework amounts to replacing 
this expectation with averages over the training data, like 
k-NN.

 
● Here’s how the two models differ however:

○ least squares assumes     is well approximated by a 
globally linear function.

○ k-NN assumes     is well approximated by a locally 
constant function.

Statistical Decision Theory



● We can actually express the expected prediction error at a 
point     (using squared loss) as a decomposition into 
variance and squared bias (here MSE is mean squared 
error):

●     is a function which perfectly labels the training set.
● This is known as the bias-variance decomposition.
 
● This can be used to show (theoretically) the effect of bias 

and variance on the performance of the model. 
○ See Elements of Statistical Learning for more details

Bias-Variance Decomposition





●  Suppose we are performing binary classification.

● The following is known as the confusion matrix:

Confusion Matrix 



● Precision is the number of true positives divided 
by the total number of positives:

● Recall is the number of true positives divided by 
the total number of correctly classified points.

 
 
 
● Intuitively, precision is the ability of the classifier 

not to label as positive a sample that is negative.
● Recall is the ability of the classifier to find all the 

positive samples.

Precision vs. Recall



● One commonly used method of determining the 
quality of a binary classification model is to use 
the F1 Score, defined as the harmonic mean of 
precision and recall:

 
 
 
 
 
● The best value is 1, the worst is 0.

F1 Score



● We have been discussing ways to evaluate your 
model.

 
● Two very common problems with a model are 

models which overfit and underfit.

Overfitting and Underfitting



● In practice, you are given data (let’s say in the supervised 
setting - so data with labels).

 
● You hope to build a model and test the model.
 
● Typically, the data is split into parts - a training set, a test 

set, and a cross-validation set.
 
1. The model is first learned using the training set.
2. The best performing model (tuning/ choosing 

hyperparameters) is determined using the validation set.
3. The evaluation of the fully trained model is performed 

using the test set (no tuning at this point can occur).

Why separate validation and test sets? To prevent 
overfitting.

Cross-Validation



What Just Happened?
● Two Basic Classifiers (linear/ k-NN)
 
● Bias / Variance Tradeoff and 

Decomposition
 
● Confusion Table and F1 Score
 
● Overfitting and Underfitting
 
● Cross-Validation


