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Classification

Recall that we we’re trying to predict continuous
values using regression.

If we’re trying to predict the values y which only
take on a small amount of discrete values, it 1S
called classification.

For now we will focus on binary classification, ie,
predicting either a Q or a 1.

0 wil

1 wil

be called the negative class, and
be called the positive class.



Logistic Regression

e We could attempt to tackle this classification
problem with the linear regression algorithm.

e However, it is easy to construct an example
where this performs poorly, as we will see on the
next slide.

e For initial intuition, it does not make sense for the
hypothesis function to output values greater than
1 or less than 0 when y € {0, 1}.



Linear Regression Binary
Classification Example

e Suppose we are trying to predict whether a tumor
1s malignant based on its size.

e Malignant tumors are labeled 1, and benign
tumors are labeled 0.

e To make predictions using linear regression, we
could say if h(x) outputs a value larger than 0.5,
predict malignant, otherwise predict benign.



Example Cont.

(Yes) 1

Malignant ?

(No)O
umor Size



Example Cont.
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e Now notice that h(z) > 0.5 = malignant does not
work anymore. We would have to alter our h.

e But we can’t just change h every time a new
sample arrives - it should be fixed after training.
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e Both linear and logistic predict straight lines.

e Linear interpolates the output and predicts the
value for x we haven’t seen.

e Logistic says all points sitting to the right of the
classifier line belong to one class, and the left
belong to the other.

o In this case, h(x) represents the probability that
x belongs to the positive class.




Sigmoid Function
e We will change the form of Ay (x):

1
ho(x) = g(0' x) =

where

B 1
14 e %

g(2)

1S called the logistic or sigmoid function.




Sigmoid Function

e Here is a plot of g(z): (visualize scaling)
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Sigmoid Function

e So we kind of arbitrarily chose this g due to the
fact that it increases from 0 to 1.

e In fact, there are many reasons why we use the
logistic function, the first being its smoothness
and easily computable derivative:

d 1

dz 1+ e %
1

(1 4 e—z)Q (e—z)

1 1
= Tre) (1 “ +e~z>)
= g(2)(1 - g(2))

g'(z) =




Fitting the Logistic Regression Model

e Similar to linear regression, we want to
find @ to best fit our data for future
predictions.

e Let’s endow the classification problem
with some probabilistic assumptions (as
we did with linear regression), and then
fit the parameters through maximum

likelihood!



Fitting the Logistic Regression Model

e Assume that

Ply=1[z;0) = he(x)
Ply=0|z;0) = 1— hy(x)

e Or more compactly, that

p(y|x;0) = (ho(z))Y(1 — hg(x))l_y



Fitting the Logistic Regression Model

e Assuming the m training examples were
generated independently, the likelihood of the
parameters is

L) = p(y|X;0)
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Fitting the Logistic Regression Model

e Maximizing the log likelihood will again be
easlier:

00) = log L(6)

> yPlogh(z?) + (1 - y) log(1 — h(z))
=1

e We will maximize this function using gradient
descent, thus we need to find its gradient. Let’s do
it component-wise on a single training example
(X,y):



Fitting the Logistic Regression Model

1
h@( )_g(9T ) 1+e _ 0T 1

€(0) = ylog ho(x) + (1 —y)log(1 — ho(x))

Therefore:

9 1 1 5
00 g0, 0) = (yg(e%) - _y)l—-g(@Ta:)> aejg(e )
1 | T i 8 i
~ (Vo ~ 0= 9y ) 9601 — a(67) 57
= (y(1—g(0"2)) — (1 —y)g(6'2)) x,
= (y — ho(z)) z;

since ¢'(z) = g(2)(1 — g(2)).



Fitting the Logistic Regression Model

e This gives us the stochastic gradient ascent rule:
.— . (i) _ QN0
0; =0, +a(y he(x™"))x;
e This looks identical to the LMS update rule!
e But this is a completely different algorithm.
e Is this a coincidence?

e No!! Itis because they are both types of
Generalized Linear Models (GLM’s).



