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Classification
● Recall that we we’re trying to predict continuous 

values using regression.
 
● If we’re trying to predict the values y which only 

take on a small amount of discrete values, it is 
called classification. 

 
● For now we will focus on binary classification, ie, 

predicting either a 0 or a 1. 
 
● 0 will be called the negative class, and 

1 will be called the positive class.



Logistic Regression
● We could attempt to tackle this classification 

problem with the linear regression algorithm.
 
● However, it is easy to construct an example 

where this performs poorly, as we will see on the 
next slide.

 
● For initial intuition, it does not make sense for the 

hypothesis function to output values greater than 
1 or less than 0 when                  .



Linear Regression Binary 
Classification Example

● Suppose we are trying to predict whether a tumor 
is malignant based on its size.

 
● Malignant tumors are labeled 1, and benign 

tumors are labeled 0.
 
● To make predictions using linear regression, we 

could say if h(x) outputs a value larger than 0.5, 
predict malignant, otherwise predict benign.



Example Cont.



● Now notice that                        malignant does not 
work anymore. We would have to alter our h.

● But we can’t just change h every time a new 
sample arrives - it should be fixed after training.

Example Cont.



● Both linear and logistic predict straight lines.
● Linear interpolates the output and predicts the 

value for x we haven’t seen.
● Logistic says all points sitting to the right of the 

classifier line belong to one class, and the left 
belong to the other.
○ In this case, h(x) represents the probability that 

x belongs to the positive class.

Example Cont.



● We will change the form of           :

where

is called the logistic or sigmoid function.

Sigmoid Function



● Here is a plot of g(z): (visualize scaling)

Sigmoid Function



● So we kind of arbitrarily chose this g due to the 
fact that it increases from 0 to 1.

 
● In fact, there are many reasons why we use the 

logistic function, the first being its smoothness 
and easily computable derivative:

Sigmoid Function



● Similar to linear regression, we want to 
find to best fit our data for future 
predictions.

● Let’s endow the classification problem 
with some probabilistic assumptions (as 
we did with linear regression), and then 
fit the parameters through maximum 
likelihood!

Fitting the Logistic Regression Model



● Assume that

● Or more compactly, that
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● Assuming the m training examples were 
generated independently, the likelihood of the 
parameters is 

Fitting the Logistic Regression Model



● Maximizing the log likelihood will again be 
easier:

● We will maximize this function using gradient 
descent, thus we need to find its gradient. Let’s do 
it component-wise on a single training example 
(x,y):
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Therefore:

since                                      . 
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● This gives us the stochastic gradient ascent rule:
 

● This looks identical to the LMS update rule!
 
● But this is a completely different algorithm. 
 
● Is this a coincidence?
 
● No!! It is because they are both types of 

Generalized Linear Models (GLM’s). 

Fitting the Logistic Regression Model


