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Supervised vs. Unsupervised
● The ultimate goal of a machine learning 

algorithm is to allow a machine to learn from 
data and make predictions/ inferences from that 
data automatically (without hand-made rules).

● There are two main different types of learning 
algorithms.

 
● Unsupervised learning algorithms learn from 

unlabeled data, whereas supervised learning 
algorithms learn from labeled data.



Supervised Learning Example 
(Linear Regression)

● Suppose we are given some data from Isla Vista 
residences:



Supervised Learning
● We can plot this data:

● We want to predict the number of ants in other 
residences from the size of their living areas.



Supervised Learning
● Maybe we have more relevant features in the 

data to help us predict:



Supervised Learning Notation
●         will denote the “input” variables, called 

input features (living area, year built, number 
of residents in our example).

●        will denote the “output” variable, or target 
variable that we are trying to predict (the 
number of ants).

 
●                 will denote a training example.
 
●                                     will denote a training set.



Supervised Learning Notation
●      will denote the space input values and 

     will denote the space of output values.

● We want to learn a function                       so that 
h(x) is a good predictor of the corresponding 
value of y.

 
● h is called the hypothesis.
 
● When the target variable is continuous, the 

learning problem is called regression. If it is 
discrete, it is called classification.



Linear Regression
● In linear regression, we want to find a best fit line 

to our data. 
 
● In our example, we restrict h to functions of the 

form:
    

● The       are the parameters (also called weights). 

● We want to choose the       so that h is the best line.



Linear Regression
● We can generalize this to arbitrary (n) numbers of 

features, and write (letting              ):

● So what does best fit line mean?
 
● We define the cost function J which 

measures how close the             are to the 



Gradient Descent
● We want to choose     to minimize the error          .

● Calculus? We will see this later.

● What we can do is use gradient descent, we 
update     by repeatedly taking steps in the 
steepest decrease of J, ie, the opposite direction of 
the gradient.



Gradient Descent
● Specifically, we want to perform the update

● Componentwise, for j=0,...,n,

●     is called the learning rate.



Gradient Descent
● So what is              ? Let’s compute it when we only 

have one training example (x,y):



Gradient Descent
● This gives the update rule:

for each individual training example                              .

● This is the “least mean squares” (LMS) update rule.

● We can iterate over the examples in our training 
set and update every time until convergence - this 
is called stochastic gradient descent.



Gradient Descent
● We could also perform the following update rule 

until convergence:

● The right term in the sum is just          for the 
original J with all training examples. 

 
● This algorithm is known as batch gradient descent.
 
● J is a convex function, so batch gradient descent 

‘always’ converges (approximately) to the global 
minimum.



Gradient Descent
● Here is an example of batch gradient descent:



Gradient Descent
● Applying this algorithm to our Isla Vista data:



Batch vs. Stochastic
● Batch has to scan through the whole dataset before 

taking a step - costly if m is large.

● Stochastic takes a step after every training example, 
and thus approaches the minimum much faster.

● However, batch always converges, but stochastic may 
oscillate around the minimum (in practice these are 
still good approximations of the true minimum)

● Hence stochastic gradient descent is preferred when 
the training set is large.



Linear Algebra
Recall: Projection

● Assuming A is full rank and n<m, the 
projection of              onto the range 
(column space) of A is

  
 

● Call                                    .
 



Projection
● If                  , then                .
○                thus

● If                   , then                .
○                thus
 

○ Take for example the column space of A 
to be a plane and b a perpendicular 
vector.



Projection
● See drawing on board.
● So we have that 
 
 
● Note that               projects vectors onto the 

perpendicular space (check for yourself).
 
● Also check for yourself that if P is a 

projection matrix, then 



Linear Algebra
● We can actually interpret linear regression as a 

projection.
 
● For example, suppose we are given the following 

points in the plane: 
 
 
 

● See the drawing on the board.



Linear Algebra
● We want to find the best fit line, ie, find C and D 

for the line y=C+Dt.
 
● Equivalently, we want to solve the following 

systems of equations



Linear Algebra
● We can rewrite this using matrix notation:  
 
 
 
 
 
 
 
● But notice this system has no solution - b is not in 

the column space of A.
 
● We hope to find the “best” solution!



Linear Algebra
● We will have some error on the best fit line. 
 
● We will measure this error as before, namely
 
 
● We want to find x to minimize this error.
 
● Notice that the error is 0 iff there exists some x 

such that Ax=b, ie,                  .
 
● In our example,                                  , see blackboard.



Linear Algebra
● In examples with outliers, this choice of error may 

not be the best. This is something to keep in mind.

● There are two pictures to keep in mind here. See 
the blackboard.

 
● We wish to find some                which minimizes the 

squared error. 
 
● In order to do this, we solve the normal equations:



Linear Algebra
● In our example, 

● Observe that the matrix is symmetric, invertible, 
and positive semidefinite (is this always true?).

 
● Simplifying this yields the normal equations



Linear Algebra
● If we had used calculus instead by minimizing
 

by taking partial derivatives and setting equal to 0, 
it would yield the identical normal equations.
● This set of equations is always linear because 

the error function is quadratic!

● Solving this we get 



Linear Algebra
● So the best line with respect to squared error is
 
 
 

● This yields the following points, as seen on the 
blackboard:



Linear Algebra
● So in the other picture, 



Linear Algebra

● Notice that p and e are perpendicular.

● In fact, e is perpendicular to any vector in the 
column space of A.
○ Test each column of A.

● C and D is the combination of the 2 columns that 
give p.



Linear Algebra
● So given a set of points, here is the algorithm to 

find the best fit line:

1. Construct the matrix A as we did in the example.

2. Solve the normal equations 

for    .

3. To find the predicted values, compute 



Probabilistic Interpretation
● Assume that the target variables and inputs are 

related via the equation

where         is an error term representing either 
unmodeled effects or random noise.

● Also assume that         are IID (independently and 
identically distributed) from a Gaussian 
distribution with mean 0 and variance      .



Probabilistic Interpretation
● This means that

which means that

where                          is the distribution of        given  
and parameterized by   . 



Design Matrix
● Given a training set, define the design matrix X to 

be the the matrix whose rows are the training 
examples:

● Also let



Likelihood Function
● Given the design matrix X and   , what is the 

distribution of the       ’s?

● The probability of the data is given by          
        . This is typically viewed as a function of 

    for a fixed    .

● When view as a function of    , it is called the 
likelihood function:



Likelihood Function
● Due to the independence of the       ’s (and thus the 

 ’s given the       ’s), then



Maximum Likelihood
● So how do we choose    ? 

● We want to choose    to maximize the probability 
of our data, ie, to maximize        .

● But         is ugly to maximize - the trick is that any 
monotone increasing function of         will yield 
the same parameter.

 
● We will maximize the log likelihood:



Maximum Likelihood
● Simplifying                                 yields



Maximum Likelihood
● So maximizing         is the same as minimizing

● Hence, given our probabilistic assumptions on the 
data, least-squares-regression corresponds to 
finding the maximum likelihood estimate of   .
Neato!



Matrix Calculus Interpretation
● Recall the design matrix X whose rows are the 

training example inputs, and column vector     
whose entries are the training example outputs.

● Then since                                   ,



Matrix Calculus Interpretation
● So we’re trying to minimize this function J. Why 

don’t we just take the derivative and set to 0?

● We can actually do that! We will derive this 
method using matrix calculus.

● Turns out that to optimize some function F, 
setting derivatives to 0 and solving is only useful 
when                      happens to be a linear system 
(or at least a system in which x can be isolated).



Matrix Calculus Interpretation
● Then since for any vector z,                                  

we have 



Matrix Calculus Interpretation
● Then



Matrix Calculus Interpretation
where:
● the third equality uses the fact that the trace of a 

real number is the real number,
● the fourth equality uses the fact that the trace of a 

matrix is the trace of its transpose,
● the fifth equality uses 

with                                                               , and that 
.



Matrix Calculus Interpretation
So to minimize J, we set its derivatives to zero, and 
we get the normal equations:

Solving for    , if X has full column rank, we have

Hey, the same as the linear algebra interpretation!



Matrix Calculus vs. Gradient Descent
● So solving for the maximal     reduces to 

computing the matrix product above (which 
involves computing an inverse of a very large 
matrix).

● However, in practice, this inverse is never 
computed. Instead, the system is posed in the 
form                               and solved using a linear 
solver.

 
● This method is cheaper, and allows exploitation of 

the coefficient matrix (using bandedness, 
symmetry, sparsity) and other methods.



Matrix Calculus vs. Gradient Descent
● Bottom-line: 
- when the first order derivative system is linear, 

solving it directly is much more computationally 
efficient than gradient descent (which can have 
slow convergence).

- Otherwise, other strategies (including gradient 
descent) may be better.

- Note: people like to use gradient descent for 
convex optimization because it is easy to 
implement and relatively cheap computationally.



What Just Happened?
● Linear Regression Interpretations:

1. Least Squares
2. Linear Algebra
3. Probabilistic
4. Matrix Calculus

 


