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Supervised vs. Unsupervised

e The ultimate goal of a machine learning
algorithm is to allow a machine to learn from
data and make predictions/ inferences from that
data automatically (without hand-made rules).

e There are two main different types of learning
algorithmes.

e Unsupervised learning algorithms learn from
unlabeled data, whereas supervised learning
algorithms learn from labeled data.




Supervised Learning Example
(Linear Regression)

e Suppose we are given some data from Isla Vista
residences:

Living area (feet?) Number of ants

2104 5678
1600 100
2400 10500
1416 234

3000 50000



Supervised Learning

e We can plot this data:
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e We want to predict the number of ants in other
residences from the size of their living areas.

0




Supervised Learning

e Maybe we have more relevant features in the
data to help us predict:

Living area (feet?) year built Number of residents Number of ants

2104 1950 4 5678
1600 1975 2 100
2400 50 15 10500
1416 1915 S 234

3000 2010 3 50000



Supervised Learning Notation

=Y will denote the “input” variables, called
input features (living area, year built, number
of residents in our example).

y'” will denote the “output” variable, or target
variable that we are trying to predict (the
number of ants).

(', 4) will denote a training example.

{(z'9,y")]i = 1,...,m} will denote a training set.




Supervised Learning Notation

X will denote the space input values and
Y will denote the space of output values.

We want to learn a function 2 : X — ) so that
h(x) is a good predictor of the corresponding
value of y.

h is called the hypothesis.

When the target variable is continuous, the
learning problem is called regression. If it is
discrete, it 1s called classification.




Linear Regression

In linear regression, we want to find a best fit line
to our data.

In our example, we restrict h to functions of the
form:

h(x) = 0g + 0121 + 0229 + 0323

The 6;s are the parameters (also called weights).

We want to choose the 6is so that h is the best line.



Linear Regression

e We can generalize this to arbitrary (n) numbers of
features, and write (lettingxg = 1):

hix) = Z O;x; = 0 x
i=0

e So what does best fit line mean?

e We define the cost function J which
measures how close the h(z'¥) s are to the y:s

7(0) = 5 3" (hy(a?) — )3

1=1



Gradient Descent
e We want to choose § to minimize the error J(6).

e Calculus? We will see this later.

e What we can do is use gradient descent, we
update 6 by repeatedly taking steps in the
steepest decrease of J, ie, the opposite direction of
the gradient.




Gradient Descent
e Specifically, we want to perform the update

f:=6—aV.J()
e Componentwise, for j=0,...,n,

0

e (¥ 1s called the learning rate.




Gradient Descent

0
So whatis 35/ (9) ? Let’s compute it when we only
have one training example (x,y):

8%](9) = O L hya)



Gradient Descent
e This gives the update rule:

0; =0, +a(y') — hg(a:(i)))a:;i)

for each individual training example (2, y®),i=1,...,m.
e This is the “least mean squares” (LMS) update rule.

e We can iterate over the examples in our training
set and update every time until convergence - this
1s called stochastic gradient descent.




Gradient Descent

We could also perform the following update rule
until convergence:

_9+az D — hy(z®))z)

0J (0)
90, for the

original J with all training examples.

This algorithm is known as batch gradient descent.

J is a convex function, so batch gradient descent
‘always’ converges (approximately) to the global
minimuinm.



Gradient Descent
e Here is an example of batch gradient descent:
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Gradient Descent
e Applying this algorithm to our Isla Vista data:
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Batch vs. Stochastic

Batch has to scan through the whole dataset before
taking a step - costly if m is large.

Stochastic takes a step after every training example,
and thus approaches the minimum much faster.

However, batch always converges, but stochastic may
oscillate around the minimum (in practice these are
still good approximations of the true minimum)

Hence stochastic gradient descent is preferred when
the training set is large.



Linear Algebra

Recall: Projection

e Assuming A is full rank and n<m, the
projection of y € R™onto the range
(column space) of A is

Proj(y; A) = argmin, .z 4 ||v — yll2 = A(AT A1 ATy

o Call P=A(ATA) 1 AY]



Projection

o If be R(A), then Pb = b.
Pb = A(ATA)_lATA.:U = Ax =0
o If b c N(A"), then Pph = 0.
o ATy =0 thus
Pb = A(ATA)_lATb =3\

o Take for example the column space of A
to be a plane and b a perpendicular
vector.



Projection

See drawing on board.
So we have that

Pb+ (I —Ple=p+e=0b

Note that /] — P projects vectors onto the
perpendicular space (check for yourself).

Also check for yourself that if Pis a
projection matrix, then

(I -P)y*=I1-P



Linear Algebra

e We can actually interpret linear regression as a
projection.

e For example, suppose we are given the following
points in the plane:

Ll (2] |2
L7 (2] |3

e See the drawing on the board.



Linear Algebra

e We want to find the best fit line, ie, find C and D
for the line y=C+Dt.

e Equivalently, we want to solve the following
systems of equations

C+D=1
C+2D
C +3D

DO DO




Linear Algebra
e We can rewrite this using matrix notation:

I 1] - 1

121%Y 2
I 3| & - 3

Axr = b

e But notice this system has no solution - b is not in
the column space of A.

e We hope to find the “best” solution!



Linear Algebra
We will have some error on the best fit line.

We will measure this error as before, namely

Az —b][* = [le][*

We want to find x to minimize this error.

Notice that the error is 0 iff there exists some x
such that Ax=b, ie, b € R(A)

In our example, |le||* = e + 5 + €3, see blackboard.



Linear Algebra

In examples with outliers, this choice of error may
not be the best. This is something to keep in mind.

There are two pictures to keep in mind here. See
the blackboard.

A

We wish to find some z = [g] which minimizes the
squared error.

In order to do this, we solve the normal equations:

AT A = ATD




Linear Algebra
e In our example,

1111"%@_36@_111;
123:"31")_61415_123

e Observe that the matrix is symmetric, invertible,
and positive semidefinite (is this always true?).

e Simplifying this yields the normal equations
3C +6D =5
6C + 14D =11



Linear Algebra
e If we had used calculus instead by minimizing

le]|? = (C+ D —1)+ (C+2D —2)* + (C + 3D — 2)?

by taking partial derivatives and setting equal to 0,
it would yield the identical normal equations.

e This set of equations is always linear because
the error function is quadratic!

e Solving this we get

A\

D =

A\

1 2
- O="Z
2 3



Linear Algebra
e So the best line with respect to squared error is

2.1
7375

e This yields the following points, as seen on the
blackboard:

7 3 13
P1 = 6:]92 — gap?) — 6

1 2 1
€1 — —6,62 — 6,83 — _6



Linear Algebra
e So in the other picture,

P1 I 7/6 ] €1
p=|p2| = |5/3| e= |eo
3 _13/6_ €3
_1_

b= |2| =p+e
2

=176
2/6
“1/6




Linear Algebra

p1 7/6 el —1/6
p=|p2| =|5/3| e=lex| = | 2/6
_pg_ _13/6_ _63_ _—1/6_
e Notice that p and e are perpendicular.

e In fact, e is perpendicular to any vector in the
column space of A.
o Test each column of A.

e C and D is the combination of the 2 columns that
give p.



Linear Algebra

So given a set of points, here is the algorithm to
find the best fit line:

. Construct the matrix A as we did in the example.
. Solve the normal equations
A" Az = A" D

for Z.

.- To find the predicted values, compute

p= AT



Probabilistic Interpretation

e Assume that the target variables and inputs are
related via the equation

MONYMONINO

where el) 1S an error term representing either
unmodeled effects or random noise.

e Also assume that € (0) are IID (independently and
identically distributed) from a Gaussian 5
distribution with mean 0 and variance o~.



Probabilistic Interpretation
e This means that

p(e”) = \/2170 exp (— (62(0)2) 2)

which means that

N 1 (2) — g1 ()2
pa056) = oo (T

2mo 207

where p(y@|2%); ) is the distribution of ¥* given
Y and parameterized by 0.



Design Matrix

e Given a training set, define the design matrix X to
be the the matrix whose rows are the training
examples:

X= |- ()T —

e Also let




Likelihood Function

e Given the design matrix X and 6, what is the
distribution of the y("s?

e The probability of the data is given by
p(7]X;0). This is typically viewed as a function of
Y for a fixed 6.

e When view as a function of 0, it is called the
likelihood function:

L(9) = L(0; X,9) = p(y]X; 0)



Likelihood Function

e Due to the independence of the (Vs (and thus the
y(z)’s given the 2(¥’s). then

m

LO) = |]p@®|29;0)

=1

[T ( )
\/%0‘ 20

= |




Maximum Likelihood
So how do we choose 6°?

We want to choosef to maximize the probability
of our data, ie, to maximize L(0).

But L(60)1s ugly to maximize - the trick is that any
monotone increasing function of L(#) will yield
the same parameter.

We will maximize the log likelihood:
¢(0) = log L(0)




Maximum Likelihood

o Simplifying /(0) = log L(0)yields

0(6)

|

log L(0)

UEE | (y® — 9T z(0)?
log H exp ( 5
. V2mo 20

= 1 () — T 52
Z " Vame ( 20° )

1=1

m

| I 1 . .
m lo . — & — gF D)2,
8= —"5 ;(y )




Maximum Likelihood
e S0 maximizing /¢(#) is the same as minimizing

% S (@ — 6720’
1=1

e Hence, given our probabilistic assumptions on the
data, least-squares-regression corresponds to
finding the maximum likelihood estimate of 6.

Neato!



Matrix Calculus Interpretation

o Recall the design matrix X whose rows are the
training example inputs, and column vector y
whose entries are the training example outputs.

e Then since hy(zV) = (z¥) 7T,

i (a;(l))Tg 1 | y@ |
X0-7 = ; - |
(z™)T9 (™)
- he(zW) —y® ]

| ho(z™) — g™ |



Matrix Calculus Interpretation

e So we’re trying to minimize this function J. Why
don’t we just take the derivative and set to 0?

e We can actually do that! We will derive this
method using matrix calculus.

e Turns out that to optimize some function F,
setting derivatives to 0 and solving is only useful
when VF(x) = 0 happens to be a linear system
(or at least a system in which x can be isolated).



Matrix Calculus Interpretation
e Then since for any vector z,

2y = E 27
i

we have

SXO-T(X0-§) = 53 (he(a®) —y®)



Matrix Calculus Interpretation
e Then

V() = Vo5(X0— 57 (X0-)

1
= =V (0"X"X0 - 60"X"5— 5" X0+ §"%)

2
1

= SVotr ("X"X0 - 0"X"§ - 5" X0+ §"5)
1

= 5V (tr 6" X" X6 — 2tr§" X6)

= % (X'X60+ X"X0—2X"Yy)

= XTX0—- X1y



Matrix Calculus Interpretation

where:

e the third equality uses the fact that the trace of a
real number is the real number,

e the fourth equality uses the fact that the trace of a
matrix is the trace of its transpose,

e the fifth equality uses

VartrABATC = BT ATCt + BATC

with A =9, B — B = X' X, C = I, and that
VAtrAB = BY.



Matrix Calculus Interpretation

So to minimize J, we set its derivatives to zero, and
we get the normal equations:

Xt'xo=Xx"y

Solving for @, if X has full column rank, we have
f=(X"X)'X"y

Hey, the same as the linear algebra interpretation!



Matrix Calculus vs. Gradient Descent

¢ So solving for the maximal 6 reduces to
computing the matrix product above (which
involves computing an inverse of a very large
matrix).

e However, in practice, this inverse is never
computed. Instead, the system is posed in the
form (X' X)0 = X'4 and solved using a linear
solver.

e This method is cheaper, and allows exploitation of
the coefficient matrix (using bandedness,
symmetry, sparsity) and other methods.



Matrix Calculus vs. Gradient Descent

e Bottom-line:

- when the first order derivative system is linear,
solving it directly is much more computationally
efficient than gradient descent (which can have
slow convergence).

- Otherwise, other strategies (including gradient
descent) may be better.

- Note: people like to use gradient descent for
convex optimization because it is easy to
implement and relatively cheap computationally.



What Just Happened?

e Linear Regression Interpretations:

1. Least Squares
2. Linear Algebra
3. Probabilistic
4. Matrix Calculus



