
Linear
Regression
Jeremy Irvin and
Daniel Spokoyny

Created from Andrew Ng’s
Stanford CS229 Notes, MIT
Linear Algebra Lecture Video 16

Supervised vs. Unsupervised
● The ultimate goal of a machine learning

algorithm is to allow a machine to learn from
data and make predictions/ inferences from that
data automatically (without hand-made rules).

● There are two main different types of learning
algorithms.

● Unsupervised learning algorithms learn from

unlabeled data, whereas supervised learning
algorithms learn from labeled data.

Supervised Learning Example
(Linear Regression)

● Suppose we are given some data from Isla Vista
residences:

Supervised Learning
● We can plot this data:

● We want to predict the number of ants in other
residences from the size of their living areas.

Supervised Learning
● Maybe we have more relevant features in the

data to help us predict:

Supervised Learning Notation
● will denote the “input” variables, called

input features (living area, year built, number
of residents in our example).

● will denote the “output” variable, or target
variable that we are trying to predict (the
number of ants).

● will denote a training example.

● will denote a training set.

Supervised Learning Notation
● will denote the space input values and

 will denote the space of output values.

● We want to learn a function so that
h(x) is a good predictor of the corresponding
value of y.

● h is called the hypothesis.

● When the target variable is continuous, the

learning problem is called regression. If it is
discrete, it is called classification.

Linear Regression
● In linear regression, we want to find a best fit line

to our data.

● In our example, we restrict h to functions of the

form:

● The are the parameters (also called weights).

● We want to choose the so that h is the best line.

Linear Regression
● We can generalize this to arbitrary (n) numbers of

features, and write (letting):

● So what does best fit line mean?

● We define the cost function J which

measures how close the are to the

Gradient Descent
● We want to choose to minimize the error .

● Calculus? We will see this later.

● What we can do is use gradient descent, we
update by repeatedly taking steps in the
steepest decrease of J, ie, the opposite direction of
the gradient.

Gradient Descent
● Specifically, we want to perform the update

● Componentwise, for j=0,...,n,

● is called the learning rate.

Gradient Descent
● So what is ? Let’s compute it when we only

have one training example (x,y):

Gradient Descent
● This gives the update rule:

for each individual training example .

● This is the “least mean squares” (LMS) update rule.

● We can iterate over the examples in our training
set and update every time until convergence - this
is called stochastic gradient descent.

Gradient Descent
● We could also perform the following update rule

until convergence:

● The right term in the sum is just for the
original J with all training examples.

● This algorithm is known as batch gradient descent.

● J is a convex function, so batch gradient descent

‘always’ converges (approximately) to the global
minimum.

Gradient Descent
● Here is an example of batch gradient descent:

Gradient Descent
● Applying this algorithm to our Isla Vista data:

Batch vs. Stochastic
● Batch has to scan through the whole dataset before

taking a step - costly if m is large.

● Stochastic takes a step after every training example,
and thus approaches the minimum much faster.

● However, batch always converges, but stochastic may
oscillate around the minimum (in practice these are
still good approximations of the true minimum)

● Hence stochastic gradient descent is preferred when
the training set is large.

Linear Algebra
Recall: Projection

● Assuming A is full rank and n<m, the
projection of onto the range
(column space) of A is

● Call .

Projection
● If , then .
○ thus

● If , then .
○ thus

○ Take for example the column space of A
to be a plane and b a perpendicular
vector.

Projection
● See drawing on board.
● So we have that

● Note that projects vectors onto the

perpendicular space (check for yourself).

● Also check for yourself that if P is a

projection matrix, then

Linear Algebra
● We can actually interpret linear regression as a

projection.

● For example, suppose we are given the following

points in the plane:

● See the drawing on the board.

Linear Algebra
● We want to find the best fit line, ie, find C and D

for the line y=C+Dt.

● Equivalently, we want to solve the following

systems of equations

Linear Algebra
● We can rewrite this using matrix notation:

● But notice this system has no solution - b is not in

the column space of A.

● We hope to find the “best” solution!

Linear Algebra
● We will have some error on the best fit line.

● We will measure this error as before, namely

● We want to find x to minimize this error.

● Notice that the error is 0 iff there exists some x

such that Ax=b, ie, .

● In our example, , see blackboard.

Linear Algebra
● In examples with outliers, this choice of error may

not be the best. This is something to keep in mind.

● There are two pictures to keep in mind here. See
the blackboard.

● We wish to find some which minimizes the

squared error.

● In order to do this, we solve the normal equations:

Linear Algebra
● In our example,

● Observe that the matrix is symmetric, invertible,
and positive semidefinite (is this always true?).

● Simplifying this yields the normal equations

Linear Algebra
● If we had used calculus instead by minimizing

by taking partial derivatives and setting equal to 0,
it would yield the identical normal equations.
● This set of equations is always linear because

the error function is quadratic!

● Solving this we get

Linear Algebra
● So the best line with respect to squared error is

● This yields the following points, as seen on the
blackboard:

Linear Algebra
● So in the other picture,

Linear Algebra

● Notice that p and e are perpendicular.

● In fact, e is perpendicular to any vector in the
column space of A.
○ Test each column of A.

● C and D is the combination of the 2 columns that
give p.

Linear Algebra
● So given a set of points, here is the algorithm to

find the best fit line:

1. Construct the matrix A as we did in the example.

2. Solve the normal equations

for .

3. To find the predicted values, compute

Probabilistic Interpretation
● Assume that the target variables and inputs are

related via the equation

where is an error term representing either
unmodeled effects or random noise.

● Also assume that are IID (independently and
identically distributed) from a Gaussian
distribution with mean 0 and variance .

Probabilistic Interpretation
● This means that

which means that

where is the distribution of given
and parameterized by .

Design Matrix
● Given a training set, define the design matrix X to

be the the matrix whose rows are the training
examples:

● Also let

Likelihood Function
● Given the design matrix X and , what is the

distribution of the ’s?

● The probability of the data is given by
 . This is typically viewed as a function of

 for a fixed .

● When view as a function of , it is called the
likelihood function:

Likelihood Function
● Due to the independence of the ’s (and thus the

 ’s given the ’s), then

Maximum Likelihood
● So how do we choose ?

● We want to choose to maximize the probability
of our data, ie, to maximize .

● But is ugly to maximize - the trick is that any
monotone increasing function of will yield
the same parameter.

● We will maximize the log likelihood:

Maximum Likelihood
● Simplifying yields

Maximum Likelihood
● So maximizing is the same as minimizing

● Hence, given our probabilistic assumptions on the
data, least-squares-regression corresponds to
finding the maximum likelihood estimate of .
Neato!

Matrix Calculus Interpretation
● Recall the design matrix X whose rows are the

training example inputs, and column vector
whose entries are the training example outputs.

● Then since ,

Matrix Calculus Interpretation
● So we’re trying to minimize this function J. Why

don’t we just take the derivative and set to 0?

● We can actually do that! We will derive this
method using matrix calculus.

● Turns out that to optimize some function F,
setting derivatives to 0 and solving is only useful
when happens to be a linear system
(or at least a system in which x can be isolated).

Matrix Calculus Interpretation
● Then since for any vector z,

we have

Matrix Calculus Interpretation
● Then

Matrix Calculus Interpretation
where:
● the third equality uses the fact that the trace of a

real number is the real number,
● the fourth equality uses the fact that the trace of a

matrix is the trace of its transpose,
● the fifth equality uses

with , and that
.

Matrix Calculus Interpretation
So to minimize J, we set its derivatives to zero, and
we get the normal equations:

Solving for , if X has full column rank, we have

Hey, the same as the linear algebra interpretation!

Matrix Calculus vs. Gradient Descent
● So solving for the maximal reduces to

computing the matrix product above (which
involves computing an inverse of a very large
matrix).

● However, in practice, this inverse is never
computed. Instead, the system is posed in the
form and solved using a linear
solver.

● This method is cheaper, and allows exploitation of

the coefficient matrix (using bandedness,
symmetry, sparsity) and other methods.

Matrix Calculus vs. Gradient Descent
● Bottom-line:
- when the first order derivative system is linear,

solving it directly is much more computationally
efficient than gradient descent (which can have
slow convergence).

- Otherwise, other strategies (including gradient
descent) may be better.

- Note: people like to use gradient descent for
convex optimization because it is easy to
implement and relatively cheap computationally.

What Just Happened?
● Linear Regression Interpretations:

1. Least Squares
2. Linear Algebra
3. Probabilistic
4. Matrix Calculus

