Linear Algebra Review

Jeremy Irvin and Daniel Spokoyny

Created from Kolter's Linear Algebra Review for Stanford CS229 Linear Equations, Notation, Matrix Multiplication

See blackboard

Identity/ Diagonal Matrix, Transpose, Symmetric Matrices, Trace, Norms

See blackboard

Linear Independence

• A set of vectors $\{x_1, x_2, ..., x_n\} \subset \mathbb{R}^m$ is <u>linearly independent</u> if no vector can be written as a linear combination of the other vectors.

Linear Independence

 Conversely, the set is <u>linearly</u>
 <u>dependent</u> if *one vector can* be written as a linear combination of the remaining vectors, i.e. if

$$x_n = \sum_{i=1}^{n} \alpha_i x_i$$

for some scalar values $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{R}$. Example on board

Rank

- Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$.
 - The <u>column rank</u> of *A* is the number of linearly independent columns of *A*.
 - The <u>row rank</u> of a *A* is the number of linearly independent rows of *A*.
 - The row rank of A equals the column rank of A, and is called the <u>rank</u> of A.

Properties of Rank

- Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. \circ rank(A) \leq min(m,n)
 - If rank(*A*) = min(m,n), A has <u>full rank</u>.
 - rank(A) = rank(A^{T})
 - rank(AB) \leq min(rank(A), rank(B))
 - $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$

Inverse

- The <u>inverse</u> of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted by A^{-1} and is the unique matrix such that $A^{-1}A = I = AA^{-1}$
- Not all matrices have inverses.
- A is <u>invertible</u> (or <u>non-singular</u>) if A^{-1} exists and is called <u>non-invertible</u> or <u>singular</u> otherwise.

Inverse

• A is invertible iff it is square and has full rank.

•
$$(A^{-1})^{-1} = A$$

• $(AB)^{-1} = B^{-1}A^{-1}$
• $(A^{-1})^T = (A^T)^{-1}$

 A is non-singular iff Ax=b has a unique solution for any b (x=A⁻¹b).

Orthogonality and Normalization

• Recall two vectors $x, y \in \mathbb{R}^n$ are orthogonal if

$$x^T y = 0$$

• A vector $x \in \mathbb{R}^n$ is <u>normalized</u> if

$$|x||_2 = 1$$

Orthogonal Matrices

 A square matrix U ∈ ℝ^{n×n} is <u>orthogonal</u> if all of its columns are orthogonal to each other and are normalized, or equivalently,

 $U^T U = I = U U^T$

• Orthogonal matrices are norm (or distance) preserving, ie, $\|Ux\|_2 = \|x\|_2$ for any $x \in \mathbb{R}^n, U \in \mathbb{R}^{n \times n}$.

Span and Basis

• The <u>span</u> of a set of vectors $\{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^m$ is the set of all vectors that can be expressed as a linear combination of $\{x_1, \dots, x_n\}$, ie,

span({
$$x_1, \ldots x_n$$
}) = $\left\{ v : v = \sum_{i=1}^n \alpha_i x_i, \ \alpha_i \in \mathbb{R} \right\}$

• If $\{x_1, \ldots, x_n\}$ is a set of *n* linear independent vectors then .

$$\operatorname{span}(\{x_1,\ldots,x_n\}) = \mathbb{R}^n$$

• $\{x_1, \ldots, x_n\}$ is called a <u>basis</u> of \mathbb{R}^n .

Range and Nullspace

• The <u>range</u> of $A \in \mathbb{R}^{m \times n}$ is the span of the columns of A, ie,

$$\mathcal{R}(A) = \{ v \in \mathbb{R}^m : v = Ax, x \in \mathbb{R}^n \}$$

• The <u>nullspace</u> of a matrix $A \in \mathbb{R}^{m \times n}$ is the set of all vectors that equal 0 when multiplied by A, ie,

$$\mathcal{N}(A) = \{ x \in \mathbb{R}^n : Ax = 0 \}$$

Range and Nullspace

• The range of A^{T} and the nullspace of A are orthogonal complements in \mathbb{R}^{n} .

• This means:

 they are disjoint subsets which span the ent space, and

 every vector in the range of A^T is orthogonal every vector in the nullspace of A.

Projection

• The <u>projection</u> of a vector $y \in \mathbb{R}^m$ onto the span of $\{x_1, \ldots, x_n\}$ (with $x_i \in \mathbb{R}^m$) is the vector $v \in \text{span}(\{x_1, \ldots, x_n\})$ closest to yas measured by Euclidean Distance (ie $||v - y||_2$).

• Formally,

 $\operatorname{Proj}(y; \{x_1, ..., x_n\}) = \operatorname*{argmin}_{v \in \operatorname{span}(\{x_1, ..., x_n\})} ||y - v||_2$

Projection

• Assuming A is full rank and n < m, the projection of $y \in \mathbb{R}^m$ onto the range of A is

 $\operatorname{Proj}(y; A) = \operatorname{argmin}_{v \in \mathcal{R}(A)} ||y - v||_2 = A(A^T A)^{-1} A^T y$

• When A contains a single column, ie, $A = a \in \mathbb{R}^m$, we see the 'familiar' case of a projection of a vector onto a line:

$$\operatorname{Proj}(y;a) = rac{aa^T}{a^Ta}y$$

Determinant

- The <u>determinant</u> of a square matrix is a function det : $\mathbb{R}^{n \times n} \to \mathbb{R}$, denoted |A| or det A.
- Let a₁,..., a_n ∈ ℝⁿ denote the columns of A. Consider S the the restriction of span({a₁,..., a_n}) to linear combinations whose coefficients satisfy

$$0 \leq \alpha_i \leq 1, i = 1, \ldots, n.$$

Determinant

• The absolute value of the determinant of *A* is a measure of the 'volume' of S.

 For example, for 2 x 2 matrices A, |det A| is a measure of the area enclosed by the parallelogram with edges the columns of A.

Properties of Determinant

- |I| = 1.
- If B is formed by multiplying a single row of A by a real number t, then
 |B| = t|A|.
- If *B* is formed by switching ay two rows of *A*, then

$$|B| = -|A|.$$

Properties of Determinant

- $|A| = |A^{\mathrm{T}}|$.
- $\bullet |AB| = |A||B|$
- |A| = 0 if and only if A is singular (non-invertible).
- If *A* is invertible, then $|A^{-1}| = 1/|A|$.

• Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say $\lambda \in \mathbb{C}$ is an <u>eigenvalue</u> of A and $x \in \mathbb{C}^n$ is the corresponding <u>eigenvector</u> if

$$Ax = \lambda x, \quad x \neq 0.$$

Intuitively, this means multiplying A by x results in a new vector in the same direction as x but scaled by λ.

Eigenvalues and Eigenvectors

- Note that if *x* is an eigenvector, then *cx* is an eigenvector for any complex *c*.
- We can rewrite the equation above as

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

• $(\lambda I - A)x = 0$ has a non-zero solution iff $(\lambda I - A)$ has a non-empty nullspace, which only happens if $(\lambda I - A)$ is singular, ie, $|(\lambda I - A)| = 0.$

E-values and E-vectors Properties

• The trace of *A* is equal to the sum of its eigenvalues,

$$\mathrm{tr}A = \sum_{i=1}^{N} \lambda_i.$$

• The determinant of *A* is equal to the product of its eigenvalues

$$|A| = \prod_{i=1}^{n} \lambda_i.$$

- The rank of *A* is equal to the number of nonzero eigenvalues of *A*.
- The eigenvalues of a diagonal matrix are just the diagonal entries.

Diagonalization

• We can write all the eigenvector equations simultaneously as

$$AX = X\Lambda.$$

with $X \in \mathbb{R}^{n \times n}$ the eigenvectors of A and a diagonal matrix Λ whose entries are the eigenvalues A, ie,

$$X \in \mathbb{R}^{n \times n} = \begin{bmatrix} | & | & | & | \\ x_1 & x_2 & \cdots & x_n \\ | & | & | & | \end{bmatrix}, \quad \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Diagonalization

 If the eigenvectors of A are linearly independent, then X will be invertible, so

$$A = X\Lambda X^{-1}.$$

We say that *A* is <u>diagonalizable</u>.

What Just Happened?

• Linear Equations

- Matrices / Special Matrices
- Subspaces and Projection

• Eigenvalues and Eigenvectors

Halfway done with linear algebra!