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Eigenvalues and Eigenvectors
● Given a square matrix                   ,  we say                 

           is an  eigenvalue of A and             is 
the corresponding eigenvector if 

● Intuitively, this means multiplying A by x 
results in a new vector in the same 
direction as x but scaled by     . 



Eigenvalues and Eigenvectors
● Note that if x is an eigenvector, then cx is 

an eigenvector for any complex c.

● We can rewrite the equation above as 

●                         has a non-zero solution iff                  
           has a non-empty nullspace, 

which only happens if                is singular, 
ie,   



E-values and E-vectors Properties
● The trace of A is equal to the sum of its 

eigenvalues,

● The determinant of A is equal to the product of 
its eigenvalues

● The rank of A is equal to the number of non-
zero eigenvalues of A.

● The eigenvalues of a diagonal matrix are just 
the diagonal entries.



Diagonalization

● We can write all the eigenvector equations 
simultaneously as           

  .
with                   the eigenvectors of A and     
a diagonal matrix      whose entries are the 
eigenvalues A, ie, 



Diagonalization

● If the eigenvectors of A are linearly 
independent, then X will be 
invertible, so 

     We say that A is diagonalizable.



Quadratic Forms

● Given any symmetric matrix                   
and vector               , the scalar value             
is called a            quadratic form.

● Explicitly, we have 



Definite Matrices
● A is positive definite if for all non-zero 

vectors              
                                   > 0. 

● A is negative definite if for all non-zero 
vectors               

                                   < 0. 
● Positive and negative definite matrices are 

full rank and thus invertible.

● For any matrix                  ,            is positive 
semidefinite.



E-values and E-vectors of Symmetric Matrices
● Let                   be any symmetric matrix:

○ All eigenvalues of A are real.

○ The non-collinear eigenvectors of A are 
orthonormal. 

○ Thus we can decompose A:

where U is an orthogonal matrix.



E-values and E-vectors of Symmetric Matrices

● We can use this to show that definiteness 
only depends on sign of eigenvalues:

where              .
● For any quadratic form           subject to                     

         , its maximum value is the 
maximum eigenvalue of A, and its 
minimum value is the minimum 
eigenvalue of A. 



Singular Value Decomposition (SVD)

● Goal: Given any matrix                 , find 
orthogonal matrices U and V such that 

● If A diagonalizable,

● If A positive semidefinite,



Singular Value Decomposition (SVD)

● See blackboard pictures.

● We know we can find an orthonormal 
basis for the rowspace of A.

● Can we find one that is mapped into an 
orthonormal basis for the column space of 
A?



Singular Value Decomposition (SVD)

● Goal: Find an orthonormal basis                  
for the row space of A such that

    
where                  is an orthonormal basis 
for the column space of A. 



Singular Value Decomposition (SVD)

● In matrix notation,

where                      orthonormal basis for the 
null space of A, and                      an 
orthonormal basis for the null space of AT .
●  Or



Singular Value Decomposition (SVD)

● But because           and            are 
orthogonal complements, V is orthogonal.

● Similarly, U is orthogonal.

● Therefore



Singular Value Decomposition (SVD)

● How do we find U and V?
● Trick:

● Since AT A is positive semidefinite, V is the 
orthogonal matrix of eigenvectors of AT A, 
and its eigenvalues are the squares of the 
diagonal entries of Σ.



Singular Value Decomposition (SVD)

● Similarly, 

● So to find U, simply find the eigenvectors 
of AAT . 



SVD Example

Find orthonormal            in the row space of 
A (     ) and orthonormal            in the 
column space of A (     ), and                such 
that



SVD Example

Therefore the eigenvectors of AT A are
 

with eigenvalues 32 and 18 respectively.



SVD Example

Therefore the eigenvectors of AT A are
 

again with eigenvalues 32 and 18 
respectively (is this surprising?)



SVD Example

Therefore:



SVD Example 2

See blackboard for geometric intuition.



SVD Example 2

● Therefore the eigenvalues of AT A are 0 and 
125. Hence: 



So who cares?
● Why is SVD even useful?

● SVD can be used for dimensionality 
reduction - given high dimensional data, 
one can use SVD to represent the data using 
less dimensions, while still capturing the 
most significant (largest eigenvalues) 
features.

● We will see important applications later.


