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Eigenvalues and Eigenvectors

e (Glven a square matrix 4 € R**", we say
A € Cisan eigenvalue of A and =z € C" js
the corresponding eigenvector if

Ax = Az, x #0.

e Intuitively, this means multiplying A by x
results in a new vector in the same
direction as x but scaled by \.



Eigenvalues and Eigenvectors

e Note that if x is an eigenvector, then cx is
an eigenvector for any complex c.

e We can rewrite the equation above as
(M —A)x =0, x#0.

e (M — A)xr =0 has a non-zero solution iff
(Al — A) has a non-empty nullspace,
which only happens if (A — A)is singular,
le,

(M — A)| = 0.



E-values and E-vectors Properties
The trace of A is equal to the sum of its

eigenvalues, "
i=1

The determinant of A is equal to the product of

its eigenvalues
Al =]
=1

The rank of A is equal to the number of non-
zero eigenvalues of A.

The eigenvalues of a diagonal matrix are just
the diagonal entries.



Diagonalization

e We can write all the eigenvector equations
simultaneously as

AX = XA.
with X € R™*" the eigenvectors of A and
a diagonal matrix A whose entries are the
eigenvalues A, 1e,

XeR =2y 29 --- z, |, A=diag(A,..., ).




Diagonalization

e If the eigenvectors of A are linearly
independent, then X will be
Invertible, so

A=XAX""

We say that A 1s diagonalizable.




Quadratic Forms

Glven any symmetric matrix A € R™*"
and vector x € R", the scalar value
is called a =" Az quadratic form.

Explicitly, we have

1=1 '



Definite Matrices

A 1s positive definite if for all non-zero
vectors z € R"

' Ax > 0.

A 1s negative definite if for all non-zero
vectors z € R"

i Axr <0,

Positive and negative definite matrices are
full rank and thus invertible.

For any matrix A € R™*" AT A is positive
semidefinite.



E-values and E-vectors of Symmetric Matrices
e Let A € R™™be any symmetric matrix:

o All eigenvalues of A are real.

o The non-collinear eigenvectors of A are
orthonormal.

o Thus we can decompose A:

A =UAU"

where U i1s an orthogonal matrix.



E-values and E-vectors of Symmetric Matrices

e We can use this to show that definiteness
only depends on sign of eigenvalues:

vl Ax = 2" UNU z = ¢y Ay = Z Ny

where y = UTz.
e For any quadratic form =" Az subject to

|z]3 =1, its maximum value is the
maximum eigenvalue of A, and its
minimum value 1s the minimum
eigenvalue of A.



Singular Value Decomposition (SVD)

e Goal: Given any matrix A € R™", find
orthogonal matrices U and V such that

A=UXV*
e If A diagonalizable,
A=XAX"".

e If A positive semidefinite,

A =UAU*



Singular Value Decomposition (SVD)

e See blackboard pictures.

e We know we can find an orthonormal
basis for the rowspace of A.

e Can we find one that is mapped into an
orthonormal basis for the column space of
A?



Singular Value Decomposition (SVD)

e Goal: Find an orthonormal basis vy, ..., U,
for the row space of A such that

Avy = oquyq, ..., Av, = o,u,

where U1, ..., 4, 1s an orthonormal basis
for the column space of A.



Singular Value Decomposition (SVD)

e In matrix notation,

a1

Tr

0

where Ur+1, ..., Um orthonormal basis for the

null space of A, and Yr+1;---; Un an

orthonormal basis for the null space of A’ .

o Or
AV =UX

0




Singular Value Decomposition (SVD)

e But because N(A) and R(A) are
orthogonal complements, V is orthogonal.

e Similarly, U is orthogonal.

e Therefore

AV = U = A=UxV?!



Singular Value Decomposition (SVD)

e How do we find U and V?

e Trick:

ATA=vxTUTusv?t = Vv
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e Since A! A is positive semidefinite, V is the
orthogonal matrix of eigenvectors of A’ A,
and its eigenvalues are the squares of the

diagonal entries of X.



Singular Value Decomposition (SVD)

e Similarly,

AAT = UuxtvViveut =U

0

0

e Soto find U, simply find the eigenvectors

of AAT .



SVD Example

4 4
__3 3_

A =

Find orthonormal V1,2 in the row space of
A (R?) and orthonormal %1, 42 in the

column space of A (R?), and 4,0, > 0 such
that

Avy = oq1uy, Ave = o9us



SVD Example

4 -3][4 4] [25 7
4 31|-3 3| |7 25

AT A =

Therefore the eigenvectors of AT A are

V2 V2
2 1 L 2 _

with eigenvalues 32 and 18 respectively.



SVD Example

4 414 =3 32 0

T _ _

Ad ~|-3 3|4 3| |0 18
Therefore the eigenvectors of AT A are
11 T
_O_ 7 _1_

again with eigenvalues 32 and 18
respectively (is this surprising?)



SVD Example

Therefore:
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SVD Example 2
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See blackboard for geometric intuition.
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SVD Example 2

e Therefore the eigenvalues of A? A are 0 and
125. Hence:

4 3] | & 26|[vizs o] [4 2 r




So who cares?
e Why is SVD even useful?

e SVD can be used for dimensionality
reduction - given high dimensional data,
one can use SVD to represent the data using
less dimensions, while still capturing the
most significant (largest eigenvalues)
features.

e We will see important applications later.



