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Data and machine learning 

Amount of data!
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Most learning 
algorithms 

New AI methods 
(deep learning) 



Andrew Ng 

The idea: 

Most perception (input processing) in the 
brain may be due to one learning algorithm.  



Andrew Ng 

The idea: 

Build learning algorithms  
that mimic the brain.  

 
Most of human intelligence may 

be due to one learning algorithm.   
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Auditory cortex learns to see 
 

Auditory Cortex 

The “one learning algorithm” hypothesis 

[Roe et al., 1992] 
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Somatosensory cortex learns to see 
 

The “one learning algorithm” hypothesis 

Somatosensory Cortex 

[Metin & Frost, 1989] 



Success+stories
Record'performance
! MNIST'(1988,'2003,'2012)'
! ImageNet (since'2012)'and'Object'Recognition''
! …

Real'applications
! Check'reading'(AT&T'Bell'Labs,'1995'– 2005)
! Optical'character'recognition' (Microsoft'OCR,'2000)
! Cancer'detection'from'medical'images'(NEC,'2010)
! Object'recognition' (Google'and'Baidu’s photo' taggers,'2013)
! Speech'recognition' (Microsoft,' Google,' IBM'switched'in'2012)
! Natural'Language'Processing' (NEC'2010)
! …



How+to+design+computers?

!Which'model'to'emulate':'brain'or'mathematical'logic'?
!Mathematical'logic'won.



Computing+with+symbols

General'computing'machines
! Turing'machine
! von'Neumann'machine

Engineering
! Programming
('reducing'a'complex'task'into
a'collection'of'simple'tasks.)

! Computer' language
! Debugging
! Operating'systems
! Libraries



Computing+with+the+brain
An'engineering'perspective
! Compact

! Energy'efficient'(20'watts)

! 1012 Glial'cells''(power,'cooling,'support)

! 1011'Neurons'(soma'+'wires)

! 1014'Connections'(synapses)

! Volume'='mostly'wires.

General'computing'machine?
! Slow'for'mathematical'logic,'arithmetic,'etc.

! Very'fast'for'vision,'speech,'language,'social'interactions,'etc.

! Evolution:'vision'–>'language'–>'logic.



Neural Networks
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What is neural networks?

Input         hidden       output
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Neural network timeline

1940s – 1970s 1980s 1990s

Perceptrons

2000-2005 2006-2010 2010s …
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Perceptrons
! The first perceptron was called Binary Threshold Models, and was 
first introduced by McCulloch and Pitts in 1943.
! Later it was popularized by Frank Rosenblatt in the early 1957.
! A famous book entitled Perceptrons by Marvin Minsky and Seymour 
Papert showed that it was impossible for these classes of network to 
learn an XOR function.
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Neural network timeline

1940s – 1970s 1980s 1990s

Multi-layer 
Perceptrons &

Back
propagationPerceptrons

2000-2005 2006-2010 2010s …
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Multi-layer Perceptrons
! Also called feed forward networks.
! Introduced by Rumelhart, Hinton, and Williams in 1986.

Backpropagation
! First developed by Werbos in his doctoral dissertation in 1974.
! Remained almost unknown in the scientific community until rediscovered  
by Parker In 1982, and Rumelhart, Hinton, and Williams in 1986.
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1940s – 1970s 1980s 1990s

Multi-layer 
Perceptrons &

Back
propagationPerceptrons

Neural network timeline

AutoencoderHopfield
network

2000-2005 2006-2010 2010s …
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Hopfield network
! First famous recurrent neural network invented by John Hopfield in 1982.
! A energy based model, inspired by Ising model in physics.
! Inspire the idea of Restricted Boltzmann Machine.

Autoencoder
! Learn a distributed representation (encoding) for a set of data, typically for 
the purpose of dimensionality reduction.
! Idea first introduced by Olshausen in the name of Sparse Coding in 1996.
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Input         hidden       output

Input       hidden     output
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Multi-layer Perceptrons Recurrent neural networks
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1940s – 1970s 1980s 1990s

Multi-layer 
Perceptrons &

Back
propagationPerceptrons

Neural network timeline

AutoencoderHopfield
network

2000-2005 2006-2010 2010s …
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Hopfield network
! First famous recurrent neural network invented by John Hopfield in 1982.
! A energy based model, inspired by Ising model in physics.
! Inspire the idea of Restricted Boltzmann Machine.

Autoencoder
! Learn a distributed representation (encoding) for a set of data, typically for 
the purpose of dimensionality reduction.
! Idea first introduced by Olshausen in the name of Sparse Coding in 1996.
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1940s – 1970s 1980s 1990s 2000-2005 2006-2010 2010s …

Multi-layer 
Perceptrons &

Back
propagationPerceptrons

Neural network timeline

Autoencoder

Convolutional
Neural 

Network

Hopfield
network
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Convolutional Neural Network
! First successful deep Neural Network.
! First introduced by Kunihiko Fukushima in 1980.
! The design was later improved in 1998 by Yann LeCun, Léon Bottou,          
Yoshua Bengio, and Patrick Haffner.
! Still the state-of-art neural nets in computer vision.
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1940s – 1970s 1980s 1990s 2000-2005 2006-2010 2010s …

Multi-layer 
Perceptrons &

Back
propagationPerceptrons

Neural network timeline

Autoencoder

Convolutional
Neural 

Network

Hopfield
network
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Popularity diminished in late 1990s
! Multi layer Perceptrons are not easy to train.

! The training of the only ‘trainable’ Convolutional neural nets is not efficient.

! Kernel method, e.g. SVM, are showed to be both efficient and effective. 
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1940s – 1970s 1980s 1990s 2000-2005 2006-2010 2010s …

Multi-layer 
Perceptrons &

Back
propagationPerceptrons

Neural network timeline

Autoencoder

Convolutional
Neural 

Network

Hopfield
network

Deep 
Belief Network

Deep 
Autoencoder
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Deep Belief Network / Deep autoencoder

! A multi layer Perceptrons / autoencoder pre-trained by Restricted 
Boltzmann Machine, then fine-tuning using back-propagation.

! Restricted Boltzmann Machines, special cases of Hopfield
Networks, is first invented by Paul Smolensky in 1986, but only rose to 
prominence after Hinton etc. invented fast learning algorithms in 2006.
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1940s – 1970s 1980s 1990s 2000-2005 2006-2010 2010s …

Multi-layer 
Perceptrons &

Back
propagationPerceptrons

Neural network timeline

Convolutional
Neural 

Network
Deep 

Belief Network
More language

models

Recursive
Neural Network

Supervised
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…

AutoencoderHopfield
network

Deep 
Autoencoder

Deep 
Boltzmann
Machine

Unsupervised
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1940s – 1970s 1980s 1990s 2000-2005 2006-2010 2010s …

Multi-layer 
Perceptrons &

Back
propagationPerceptrons

Neural network timeline

Convolutional
Neural 

Network
Deep 

Belief Network

Recursive
Neural Network

Supervised

More language
models
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…

AutoencoderHopfield
network

Deep 
Autoencoder

Deep 
Boltzmann
Machine

Unsupervised
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Perceptron: the simplest neural network

x: n-dimension input
w: parameters (weights)
b:  bias 
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Perceptron: the simplest neural network

x: n-dimension input
w: combination weights
b:  bias 

n

Data Mining |
University of California at Santa Barbara

is called Activation function, e.g.,   
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The+perceptron+is+a+machine

Frank'Rosenblatt



The+perceptron

!The'perceptron'does'things'that'vintage'computers'could'not'match.

!Alternative'computer'architecture?''Analog'computer?



Quillian’s+hierarchical+
propositional+model+(1968)



(see'McClelland'and'Roger,'2003)
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Perceptron with sigmoid activation function

n

x: n-dimension input
w: combination weights
b:  bias 
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"Activation function           , e.g.,   
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Sigmoid function

Construct cost function to learn parameters {w, b}: 2[t (x)]E h= −
Where t is {1, 0} to denote two classes.   

Logistic 
regression
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Activation functions

#
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Perceptron: the simplest neural network 
# Algorithm 

1. Initialize: w, b

2. For each data point x and label t
Predict the label of x:

If y≠t, update the parameters by gradient descent 
( )Ty f w x b= +

Data Mining |
University of California at Santa Barbara20

If y≠t, update the parameters by gradient descent 
and   

where 
Else w and b does not change

3. Repeat until convergence

( )ww w Eη← − ∇ ( )bb b Eη← − ∇
2[t (x)]E h= −



Department of Computer Science

Motivating example: Non-linear classification

# x1 and x2 are binary (0 or 1) 
# Learn y= x1 xor x2
# Perceptron does not work as 

the problem is not linear 

Data Mining |
University of California at Santa Barbara

separable. 
# One solution: Multi-layer 

Perceptron.

21
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Multi-layer Perceptrons
# Second generation (1980s)

"Feed-forward neural networks

Data Mining |
University of California at Santa Barbara22

Stack of 
“perceptrons”
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Multi-layer Perceptrons
# Second generation (1980s)

Input and output of 2nd layer:
(2) (1) (1)

(2) (2)( )
z w x b
a f z

= +

=

Input and output of 3rd layer:

Data Mining |
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(3) (2) (2) (2)

(3) (3)( )
z w a b
a f z

= +

=

Output layer:
(3) (3) (3)( ) ( b )h x f w a= +
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Multi-layer Perceptrons
# Second generation (1980s)

Input and output of 2nd layer:
(2) (1) (1)

(2) (2)( )
z w x b
a f z

= +

=

Input and output of 3rd layer:
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Activation function f : continuous nonlinear function

(3) (2) (2) (2)

(3) (3)( )
z w a b
a f z

= +

=

Output layer:
(3) (3) (3)( ) ( b )h x f w a= +

1(z) (sigmoid), , (z) (tanh)
1

z z

z z z

e ef or f
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Multi-layer Perceptrons
# Second generation (1980s)

Input and output of 2nd layer:
(2) (1) (1)

(2) (2)( )
z w x b

a f z

= +

=

Input and output of 3rd layer:
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Input and output of 3rd layer:
(3) (2) (2) (2)

(3) (3)( )
z w a b
a f z

= +

=

Output layer:
(3) (3) (3)( ) ( b )h x f w a= +

Parameters {       ,        ,       ,       ,        ,       } to be learnt. (1)w (2)w (3)w (1)b ( 2 )b (3)b
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Motivating example: a solution

x1 x1 and x210
-10

10 -10
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x2

b1 = 1

not (x1 or x2 )

b2 = 1

10

-15

-10

5
5

-10

-10

x1 xor x2
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Universal Approximation Theorem

Here ‘mild’ means any non-constant, bounded, 

A feed-forward network with a single hidden layer 
containing a finite number of neurons can approximate
continuous functions on compact subsets of R^n, 
under mild assumptions on the activation function.

A feed-forward network with a single hidden layer 
containing a finite number of neurons can approximate
continuous functions on compact subsets of R^n, 
under mild assumptions on the activation function.

Data Mining |
University of California at Santa Barbara

! Here ‘mild’ means any non-constant, bounded, 
and monotonically-increasing continuous function.

! Example activation functions
! Sigmoid function
! Hyperbolic Tan function
! Rectifier function 

27
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Activation functions

#

Data Mining |
University of California at Santa Barbara28
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Universal Approximation Theorem

Here ‘mild’ means any non-constant, bounded, 

A feed-forward network with a single hidden layer 
containing a finite number of neurons can approximate
continuous functions on compact subsets of R^n, 
under mild assumptions on the activation function.

A feed-forward network with a single hidden layer 
containing a finite number of neurons can approximate
continuous functions on compact subsets of R^n, 
under mild assumptions on the activation function.
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! Here ‘mild’ means any non-constant, bounded, 
and monotonically-increasing continuous function.

! Example activation functions
! Sigmoid function
! Hyperbolic tan function
! Rectifier function 

29
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Multi-layer Perceptrons
# Second generation (1980s)

Input and output of 2nd layer:
(2) (1) (1)

(2) (2)( )
z w x b

a f z

= +

=

Input and output of 3rd layer:
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Input and output of 3rd layer:
(3) (2) (2) (2)

(3) (3)( )
z w a b
a f z

= +

=

Output layer:
(3) (3) (3)( ) ( b )h x f w a= +

Parameters {       ,        ,       ,       ,        ,       } to be learnt. (1)w (2)w (3)w (1)b ( 2 )b (3)b



Department of Computer Science

Parameter Estimation
# A training set of m data points,                                       

# Objective function 

(1) (1) (m) (m){( , ), ..., ( , )}x y x y

2 2
( ) ( ) ( )

1 1

1min ( )
2 2

m L
i i l

i l F

h x y w
m

λ

= =

Η = − +∑ ∑
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where,

: average sum-of-squares error term  

:  weight decay term;   L : the number of 
layers

31
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Optimization algorithm
#Gradient descent

( ) ( )
( )

( ) ( )
( )

:

:
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ib∂
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Optimization algorithm
#Gradient descent

( ) ( )
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#Backpropagation algorithm: a systematic way

to compute                   and   
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Backpropagation
# Perform a feedforward pass, computing the activations 

for layers L2, L3, and so on up to the output layer h(x).

Input and output of 2nd layer:
(2) (1) (1)

(2) (2)( )
z w x b

a f z

= +

=
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Backpropagation
# Perform a feedforward pass, computing the activations 

for layers L2, L3, and so on up to the output layer h(x).

Input and output of 2nd layer:
(2) (1) (1)

(2) (2)( )
z w x b

a f z

= +

=

Data Mining |
University of California at Santa Barbara35

Input and output of 3rd layer:
(3) (2) (2) (2)

(3) (3)( )
z w a b
a f z

= +

=
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Backpropagation
# Perform a feedforward pass, computing the activations 

for layers L2, L3, and so on up to the output layer h(x).

Input and output of 2nd layer:
(2) (1) (1)

(2) (2)( )
z w x b

a f z

= +

=

Data Mining |
University of California at Santa Barbara36

Input and output of 3rd layer:
(3) (2) (2) (2)

(3) (3)( )
z w a b
a f z

= +

=

Output layer:
(3) (3) (3)( ) ( b )h x f w a= +



Loss+bricks

Propagation Back-propagation

Square W =
)

*
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Gradient Checking (important! )
# Definition of derivative

For function         with parameter 

Comparison

( )J θ θ

0

( ) ( )( ) lim
2

d J JJ
d ε

θ ε θ ε
θ

θ ε→

+ − −
=
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# Comparison

42

F

F

A B
A B

δ
−

≤
+

Where, A are the derivatives obtained by 
backpropagation; B are those obtained by definition; 

9, usually, 10δ −≤
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Problems with back-propagation

$ The learning time does 
not scale well
!It is very slow in networks 

with multiple hidden layers. 
$ It can get stuck in poor 

Data Mining |
University of California at Santa Barbara43

Input             hidden             output

$ It can get stuck in poor 
local optima.
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Deep Supervised Learning is Non-Convex

$ Example: simplest 3-layer neural net
! One neural in input/hidden/output layer
! Training data (x, y):  (0.5, 0.5) and (-0.5, -0.5)
! Activation function: hyperbolic tan
! Objective function: square cost

Data Mining |
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Input    hidden    output
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Why not multi-layer model with back-propagation
$ The learning time does not 

scale well
!It is very slow in networks with 

multiple hidden layers. 
$ It can get stuck in poor local 

optima.

Data Mining |
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Input             hidden             output

optima.

$ Overfitting
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Overfitting: an example
Pr

ice

Pr
ice

Pr
ice
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Overfitting: If we have too many parameters, the learned 
hypothesis may fit the training set very well, but fail to generalize 
to new examples (testing data).

Size Size Size
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Why not multi-layer model with back-propagation
$ The learning time does not 

scale well
!It is very slow in networks with 

multiple hidden layers. 
$ It can get stuck in poor local 

optima.
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Input             hidden             output

optima.

$ Overfitting
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Solutions
$ Solutions for local optima:

!Use better initialization (Restricted Boltzmann Machine)
!Find other method for optimization
!Find better structures

Data Mining |
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$ Solutions for overfitting:
! More data
! Weight decay (sparse autoencoder)
! Reduce the number of parameters

!Invariances (Convolutional NN)
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1940s – 1970s 1980s 1990s 2000-2005 2006-2010 2010s …

Multi-layer 
Perceptrons &

Back
propagationPerceptrons

Neural network timeline

Convolutional
Neural 

Network
Deep 

Belief Network

Recursive
Neural Network

Supervised

More language
models
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…

AutoencoderHopfield
network

Deep 
Autoencoder

Deep 
Boltzmann
Machine

Unsupervised
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Unsupervised neural network: Autoencoder

! Learn a distributed representation (encoding) 
for a set of data.

! One of the simplest unsupervised learning 
neural network.

Data Mining |
University of California at Santa Barbara50

! Why unsupervised learning?
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Why unsupervised learning?

! It is likely to be much more common in the 
brain than supervised learning. Most data are 
unlabeled.

! Most data are unlabeled. We need 
unsupervised learning to help on supervised 

Data Mining |
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unsupervised learning to help on supervised 
tasks.
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Autoencoder
! An autoencoder is composed 
with an input layer, an output 
layer and one hidden layers 
connecting them. 

! The difference with the MLP 
is that an autoencoder is 
trained to reconstruct its own 

Data Mining |
University of California at Santa Barbara

trained to reconstruct its own 
inputs x, most time with fewer 
neurons in the hidden layer.

! The weights between hidden 
and output layer W  is the 
transpose of the weights W 
between the input layer and the 
hidden layer.

2

1
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Autoencoder Activation function:

Forward pass:

Data Mining |
University of California at Santa Barbara

Objective function:

encoderdecoder
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Deep Autoencoder

! Autoencoders can be 
stacked to form a deep 
network by feeding the 
latent representation 
(hidden layer) of one auto-

Data Mining |
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(hidden layer) of one auto-
encoder as the input layer 
of another autoencoder
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Visualization of the 2-D codes produced 2-D PCA
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Visualization of the 2-D codes produced by a 784-1000-500-250-2 AutoEncoder

WHY IS THE 1000 THERE??????
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Applications
# Handwritten digit recognition

"http://www.cs.toronto.edu/~hinton/adi/index.htm

# Face detection
"https://www.youtube.com/watch?t=19&v=bKPf_6J0Qpk

Data Mining |
University of California at Santa Barbara

# Off-Road robot navigation
"https://www.youtube.com/watch?v=GLgX8ku5TOQ

57
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Questions?
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Bigger is better 

[ Adam Coates] 
Size of neural network 
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