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Data and machine learning

New Al methods
(deep learning)

Performance

Amount of data

Andrew Ng



The idea:

Most perception (input processing) in the
brain may be due to one learning algorithm.

Andrew Ng



The idea:

Build learning algorithms
that mimic the brain.

Most of human intelligence may
be due to one learning algorithm.

Andrew Ng



The “one learning algorithm™ hypothesis

Auditory Cortex

Auditory cortex learns to see

[Roe et al., 1992]

Andrew Ng



The “one learning algorithm™ hypothesis

Somatosensory cortex learns to see

[Metin & Frost, 1989]

Andrew Ng



Success stories

Record performance
= MNIST (1988, 2003, 2012)

= ImageNet (since 2012) and Object Recognition

Real applications
= Check reading (AT&T Bell Labs, 1995 — 2005)

= Optical character recognition (Microsoft OCR, 2000)

= Cancer detection from medical images (NEC, 2010)

= Object recognition (Google and Baidu’s photo taggers, 2013)
= Speech recognition (Microsoft, Google, IBM switched in 2012)
= Natural Language Processing (NEC 2010)



How to design computers?

Biological computer Mathematical computer
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= Which model to emulate: brain or mathematical logic ?
= Mathematical logicwon.



Computing with symbols

General computing machines
= Turing machine

= von Neumann machine

Engineering

= Programming
( reducing a complex task into
a collection of simple tasks.)

Computer language
Debugging
Operating systems
Libraries
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Computing with the brain

An engineering perspective
= Compact

Energy efficient (20 watts)

1012 Glial cells (power, cooling, support)
1011 Neurons (soma + wires)

1014 Connections (synapses)

Volume = mostly wires.

General computing machine?
= Slow for mathematical logic, arithmetic, etc.

= Very fast for vision, speech, language, social interactions, etc.
= Evolution: vision —> language —> logic.



Neural Networks
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What is neural networks?

Input hidden output

University of California at Santa Barbara
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Neural network timeline

Perceptrons

Perceptrons

» The first perceptron was called Binary Threshold Models, and was
first introduced by McCulloch and Pitts in 1943.

» Later it was popularized by Frank Rosenblatt in the early 1957.

» A famous book entitled Perceptrons by Marvin Minsky and Seymour
Papert showed that it was impossible for these classes of network to
learn an XOR function.

University of California at Santa Barbara
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Neural network timeline

Multi-layer
Perceptrons &
Back

Perceptrons propagation

\
L2

Multi-layer Perceptrons
» Also called feed forward networks.
» Introduced by Rumelhart, Hinton, and Williams in 1986.

Backpropagation

» First developed by Werbos in his doctoral dissertation in 1974.

» Remained almost unknown in the scientific community until rediscovered
by Parker In 1982, and Rumelhart, Hinton, and Williams in 1986.

University of California at Santa Barbara
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Neural network timeline

Multi-layer
Perceptrons &
Back
propagation

Perceptrons

</ J
Hopfield Autoencoder
network

Hopfield network

» First famous recurrent neural network invented by John Hopfield in 1982.
» A energy based model, inspired by Ising model in physics.

» Inspire the idea of Restricted Boltzmann Machine.

Autoencoder

» Learn a distributed representation (encoding) for a set of data, typically for
the purpose of dimensionality reduction.

> ldea first introduced by Olshausen in the name of Sparse Coding in 1996.

University of California at Santa Barbara
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Input hidden output
Input hidden output

Multi-layer Perceptrons Recurrent neural networks

University of California at Santa Barbara
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Neural network timeline

Multi-layer
Perceptrons &
Back
propagation

Perceptrons

</ J
Hopfield Autoencoder
network

Hopfield network

» First famous recurrent neural network invented by John Hopfield in 1982.
» A energy based model, inspired by Ising model in physics.

» Inspire the idea of Restricted Boltzmann Machine.

Autoencoder

» Learn a distributed representation (encoding) for a set of data, typically for
the purpose of dimensionality reduction.

> ldea first introduced by Olshausen in the name of Sparse Coding in 1996.
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Neural network timeline

Multi-layer
Perceptrons & Con'\\lloluti?nal
Back eura
Perceptrons propagation Network
. < .

)
Hopfield  Autoencoder
network

Convolutional Neural Network
> First successful deep Neural Network.
» First introduced by Kunihiko Fukushima in 1980.

» The design was later improved in 1998 by Yann LeCun, Léon Bottou,
Yoshua Bengio, and Patrick Haffner.

> Still the state-of-art neural nets in computer vision.

University of California at Santa Barbara
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Neural network timeline

Multi-layer
Perceptrons & Con'\\lloluti?nal
Back eura
Perceptrons propagation Network

.\ \ \
. . =

)
Hopfield  Autoencoder
network

Popularity diminished in late 1990s
» Multi layer Perceptrons are not easy to train.

» The training of the only ‘trainable’ Convolutional neural nets is not efficient.

> Kernel method, e.g. SVM, are showed to be both efficient and effective.

University of California at Santa Barbara
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Neural network timeline

Multi-layer
Perceptrons & Con'\\lloluti:)nal 5
Back eura eep
Perceptrons propagation Network Belief Network
\ A A

J J J
Hopfield  Autoencoder Deep
network Autoencoder

Deep Belief Network / Deep autoencoder

» A multi layer Perceptrons / autoencoder pre-trained by Restricted
Boltzmann Machine, then fine-tuning using back-propagation.

» Restricted Boltzmann Machines, special cases of Hopfield
Networks, is first invented by Paul Smolensky in 1986, but only rose to
prominence after Hinton etc. invented fast learning algorithms in 2006.

University of California at Santa Barbara
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Neural network timeline

Su pe rvised Recursive
Multi-layer Neural Network
Perceptrons & Con'\\llolutif)nal 5
Back eura eep More language
Perceptrons propagation Network Belief Network models

Hopfield  Autoencoder Deep Deep
network Autoencoder Boltzmann
Machine

Unsupervised

University of California at Santa Barbara
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Neural network timeline

Su pe rvised Recursive
Multi-layer Neural Network
Perceptrons & Con'\\llolutif)nal 5
Back eura eep More language
Perceptrons propagation Network Belief Network models

Hopfield  Autoencoder Deep Deep
network Autoencoder Boltzmann
Machine

Unsupervised

University of California at Santa Barbara
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Perceptron: the simplest neural network

X: n-dimension input
w: parameters (weights)
b: bias

h(x) = f(i wx, +b) = f(w'x+b)

University of California at Santa Barbara
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Perceptron: the simplest neural network

X: n-dimension input
w: combination weights
b: bias

h(x) = f(iwixi +b)= f(W' x+b)

£ (*) is called Activation function, e.g.,

Step function: f(Z) — {1 if z>0

- otherwise

University of California at Santa Barbara




The perceptron is a machine

Frank Rosenblatt




The perceptron

*The perceptron doesthings that vintage computers could not match.

=Alternative computer architecture? Analogcomputer?



Quillian’s hierarchical
oropositional model (1968
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Perceptron with sigmoid activation function

X: n-dimension input
w: combination weights
b: bias

+1

h(x) = f(iwixi +b)= f(W' x+b)

m Activation function f () ,e.q.,

1
Sigmoid function f(z)= -
l+e ¢
Construct cost function to learn parameters {w, b}: £ = [t— h(x)] Logistic
regression

Where ¢ is {1, O} to denote two classes.

University of California at Santa Barbara



Activation functions

O Step function:

Fo) ={
[0 Rectifier function:
f(z) = max {0, z}
[0 Sigmoid function
1
f(Z) - 1+e~2
0 Hyperbolic tan function
() = e’ —e”
12 =2 + e~z
[0 Stochastic binary neural

+1,z>0
0,z<0

Z

P(f(z) = 1) =

1+e7?

| Department of Computer Science

University of California at Santa Barbara
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Perceptron: the simplest neural network

O Algorithm
1. Initialize: w, b

2. For each data point x and label ¢
Predict the label of x: y=f(wW'x+b)
If y=t, update the parameters by gradient descent

w<—w-n(V E) and p<—p-yn(V,E)
where E = [t— h(x)]?
Else w and b does not change

3. Repeat until convergence

University of California at Santa Barbara
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Motivating example: Non-linear classification

[0 X, and X, are binary (0O or 1)

1 0 Learn y= X, XOr X,
D X [0 Perceptron does not work as
% the problem is not linear
separable.
[0 One solution: Multi-layer
X G Perceptron.

University of California at Santa Barbara
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Multi-layer Perceptrons

[0 Second generation (1980s)
B Feed-forward neural networks

Stack of
“perceptrons”

Layer Li Layer L2 Layer L3 Layer L4

University of California at Santa Barbara
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Multi-layer Perceptrons

[0 Second generation (1980s)

X a” a” Input and output of 2" layer:

Z(2) — W(l)x_l_b(l)

a® = £(z?)

Input and output of 3" layer:
7D 2y @g?® 4 p®
a® = £(z?)

Output layer:

Layer L Layer Lz Layer Lz Layer Ls h(x) = f(w(3)a(3) + b(3))

University of California at Santa Barbara
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Multi-layer Perceptrons

[0 Second generation (1980s)

X a” a” Input and output of 2" layer:

Z(2) — W(l)x_l_b(l)

a® = £(z?)

Input and output of 3" layer:
7D 2y @g?® 4 p®
a® = £(z?)

Output layer:

Layer L Layer Lz Layer Lz Layer Ls h(x) = f(w(3)a(3) + b(3))

Activation function f : continuous nonlinear function

1 Z_ =2
_(sigmoid), or, f(z)=S"%
1+e°¢ e +e

University of California at Santa Barbara

f(@)=

(tanh)
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Multi-layer Perceptrons

[0 Second generation (1980s)

X a® a”

u " Input and output of 2" layer:

Z(2) — W(l)x + b(l)

a® = f(z?)

Input and output of 3" layer:

Z(3) _ W(Z)a(2) + b(2)

a(3) _ f(Z(3))
Output layer:
h(X) _ f(w(3)a(3) +b(3))

Layer L1 Layer Lz Layer Ls Layer Ls

Parameters { W', w®, w®, b, p® b }to be learnt.

University of California at Santa Barbara
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Motivating example: a solution

University of California at Santa Barbara
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Universal Approximation Theorem

A feed-forward network with a single hidden layer
containing a finite number of neurons can approximate
continuous functions on compact subsets of R/ n,
under mild assumptions on the activation function.

> Here ‘mild’ means any non-constant, bounded,
and monotonically-increasing continuous function.
> Example activation functions

» Sigmoid function
» Hyperbolic Tan function
» Rectifier function

University of California at Santa Barbara




Activation functions

O Step function:

Fo) ={
[0 Rectifier function:
f(z) = max {0, z}
[0 Sigmoid function
1
f(Z) - 1+e~2
0 Hyperbolic tan function
() = e’ —e”
12 =2 + e~z
[0 Stochastic binary neural

+1,z>0
0,z<0

Z

P(f(z) = 1) =

1+e7?
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Universal Approximation Theorem

A feed-forward network with a single hidden layer
containing a finite number of neurons can approximate
continuous functions on compact subsets of R/ n,
under mild assumptions on the activation function.

> Here ‘mild’ means any non-constant, bounded,
and monotonically-increasing continuous function.
> Example activation functions

» Sigmoid function
» Hyperbolic tan function
» Rectifier function

University of California at Santa Barbara
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Multi-layer Perceptrons

[0 Second generation (1980s)

X a® a”

u " Input and output of 2" layer:

Z(2) — W(l)x + b(l)

a® = f(z?)

Input and output of 3" layer:

Z(3) _ W(Z)a(2) + b(2)

a(3) _ f(Z(3))
Output layer:
h(X) _ f(w(3)a(3) +b(3))

Layer L1 Layer Lz Layer Ls Layer Ls

Parameters { W', w®, w®, b, p® b }to be learnt.

University of California at Santa Barbara
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Parameter Estimation

0 A training set of m data points, {(x®, y"),...(x™, y™)}

0 Objective function
min H ——ZHh(x(’)) y(’)H +—ZHW(”H

where,

—— ZHh(Xo)) yo)

2

. average sum-of-squares error term

_ZHW(DH . weight decay term; L : the number of
= F

University of California at Santa Barbara
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Optimization algorithm

OGradient descent

W.. = W.. el 04
lj lj (1)
aw,.j
oH
(1) (1)
b :=b" —a—
ab( )

University of California at Santa Barbara
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Optimization algorithm

OGradient descent
(1) (1) JoH

w. =W —A
1] 1] (1)
ow;,
b(l) '=b(l)—a oH
l * l ab.(l)
[OBackpropagation algorithm: a systematic way
to compute oH and o

() ()
Iw;, b,

University of California at Santa Barbara
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Backpropagation

O Perform a feedforward pass, computing the activations
for layers L2, L3, and so on up to the output layer A(x).

Input and output of 2nd layer:

Z(2) _ w(l)x + b(l)

a(2) — f(Z(Z))

Layer L1 Layer L2 LayerLs Layer L4

University of California at Santa Barbara
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Backpropagation

O Perform a feedforward pass, computing the activations
for layers L2, L3, and so on up to the output layer A(x).

Input and output of 2nd layer:

(2)

) 2) ) 3)
a‘ Cl( 7P = w(l)x + b(l)

e u?

1 (2) (2)
a”=f(z")

Xy Input and output of 3 layer:
3) _ (2 (2, 1,2

h(x) 27 =w"a"+b
3 3
xn Cl( ) _ f(Z( ))
+1
Layer L1 Layer L2 LayerLs Layer L4

University of California at Santa Barbara
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Backpropagation

O Perform a feedforward pass, computing the activations
for layers L2, L3, and so on up to the output layer A(x).

Input and output of 2" layer:
) a(z) ) a(3)— P P y

. o+ e e z? =wPx +p"
1
a(2) — f(Z(Z))
Xy Input and output of 3 layer:
3) _ 22 12
h(x) 27 =w"a” +b
X a” = f(z?)

Output layer:
h(X) _ f(w(3)a(3) +b(3))

Layer L1 Layer L2 LayerLs Layer L4

University of California at Santa Barbara




Loss bricks

) )
Square y=%(x—d)2 £=(x—d)T£
Log c=+1 y =log(1l+ e™%) g—i =%eccxg—i
Hinge c= 41 y = max(0,m —cx) g—i = —c I{cx <mj} Z—i
x OE] _ , x X OE
LogSoftMax c=1..k y =log(X,e*r)—x, &] = (e*s/Xy e’k — 55c)@
S

: _ _ 9E] _ _ 0E
MaxMargin c=1..k Y= [I,?Sé‘{xk +m} xc] 6x]s = (65 — 65.) I{E > 0} %

+
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Gradient Checking (important! )

[0 Definition of derivative
For function J(@) with parameter ¢
d J(O+e)-J(0-¢)

—J(0) =1lim
do e—0 2¢

0 Comparison

A-B
H HF <0 Where, A are the derivatives obtained by
HA + B H - backpropagation; B are those obtained by definition;

d,usually, <10~

University of California at Santa Barbara
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Problems with back-propagation

d The learning time does
not scale well

>t is very slow in networks
with multiple hidden layers.

Q It can get stuck in poor
local optima.

Input hidden output

University of California at Santa Barbara
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Deep Supervised Learning is Non-Convex

(0.5-tanh(x tanh(y 0.500°+-0 5-tanh{x tanh(y -0.59)7

University of California at Santa Barbara
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Why not multi-layer model with back-propagation

Q The learning time does not
scale well

>t is very slow in networks with
multiple hidden layers.

Q It can get stuck in poor local
optima.

Q Overfitting

Input hidden output

University of California at Santa Barbara
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Overfitting: an example

5 5 5
Size Size Size
90 + 91$ 90 + 0113 + 02562 O + 012 + 921132 + 93%3 + 941134

Overfitting: If we have too many parameters, the learned
hypothesis may fit the training set very well, but fail to generalize
to new examples (testing data).

University of California at Santa Barbara
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Why not multi-layer model with back-propagation

Q The learning time does not
scale well

>t is very slow in networks with
multiple hidden layers.

Q It can get stuck in poor local
optima.

Q Overfitting

Input hidden output

University of California at Santa Barbara
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Solutions

O Solutions for local optima:
»Use better initialization (Restricted Boltzmann Machine)

»Find other method for optimization
» Find better structures

Q Solutions for overfitting:
» More data

» Weight decay (sparse autoencoder)
» Reduce the number of parameters
»Invariances (Convolutional NN)

University of California at Santa Barbara
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Neural network timeline

Su pe rvised Recursive
Multi-layer Neural Network
Perceptrons & Con'\\llolutif)nal 5
Back eura eep More language
Perceptrons propagation Network Belief Network models

Hopfield  Autoencoder Deep Deep
network Autoencoder Boltzmann
Machine

Unsupervised

University of California at Santa Barbara
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Unsupervised neural network: Autoencoder

» Learn a distributed representation (encoding)
for a set of data.

» One of the simplest unsupervised learning
neural network.

» Why unsupervised learning?

University of California at Santa Barbara
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Why unsupervised learning?

> Itis likely to be much more common in the
brain than supervised learning. Most data are
unlabeled.

» Most data are unlabeled. We need
unsupervised learning to help on supervised
tasks.

University of California at Santa Barbara
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Autoencoder

Output )’(\j(i)

» An autoencoder is composed
with an input layer, an output
layer and one hidden layers
connecting them.

» The difference with the MLP
is that an autoencoder is
trained to reconstruct its own
inputs x, most time with fewer
neurons in the hidden layer.

» The weights between hidden
and output layer W, is the
transpose of the weights W,
between the input layer and the
hidden layer.

University of California at Santa Barbara
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Autoencoder

Activation function:

e

Forward pass:

£ = FOWlFW x)

decoder encoder

Objective function:

N A
1

argmin H=—— % E E #n) _ plny2 (g

w%1?b2 2}4\'. — ﬂ1:1( m i J ()

A . g
F3eIWIE i)

University of California at Santa Barbara
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Deep Autoencoder

[30]
] el Top |
bocsn E“;ﬁ » Autoencoders can be
e i stacked to form a deep
f @ j network by feeding the
N " latent representation
S (hidden layer) of one auto-
i E [,_;m,.,,,.,k S S — encoder as the input layer
’ I ' e — of another autoencoder
REM
| 1
RBM

Pretraining

University of California at Santa Barbara
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Visualization of the 2-D codes produced 2-D PCA
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Applications

0 Handwritten digit recognition
|

0 Face detection
[

0 Off-Road robot navigation
N

University of California at Santa Barbara
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Questions?

University of California at Santa Barbara
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