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Abstract

We present a practical implementation of a fully unsupervised disease progression
model [10]. The implementation utilizes all new components we developed for
generic use in Bayesian disease progression modeling. It improves upon [10]
by providing a more informative fully Bayesian approach and a faster inference
algorithm. The implementation is completely built on the pyMC3 open-source
library making it easy to extend the model and apply to new settings.

1 Disease Progression Models

Traditionally, disease severity and progression have been assessed manually by physicians using
guidelines such as the GOLD criteria for COPD [6]. These guidelines are typically based on
rules applied to the patient’s biomarkers, demographics, and other data easily extracted from health
records. The sub-area of machine learning called disease progression modeling (DPM) focuses on
automating this process [5]. Automation leads to more accurate diagnoses and optimal treatment
paths which can literally be the difference between life and death as in the case of coagulopathy
patients [9]. More broadly, we expect that algorithms that learn disease progression models from
electronic health records will lead to new insights on the progression of rare and difficult to stage
chronic diseases, guiding both clinical practice and medical research.

2 Bayesian Models and pyMC3

Bayesian networks provide a natural framework for modeling disease progression. They allow for
the flexible modeling of “hidden states” which often arise in medical scenarios where measurements
are simply proxies for variables of interest. Furthermore, Bayesian posteriors provide a full descrip-
tion of parameters of interest as oppose to point estimates and simple confidence intervals. Several
examples of Bayesian network models for disease progression exist in the literature [1, 2, 4, 7, 10].

pyMC3 is a Python module that provides a unified and comprehensive framework for fitting
Bayesian models using MCMC [8]. pyMC3’s key strength is its modularity and extensibility: ran-
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dom variables in a Bayesian network can be easily added or replaced to construct a model and
multiple general purpose samplers are available.

3 New pyMC3 Tools for DPM

We implemented several tools in Python that could be used with pyMC3 to aid with generic disease
progression modeling:

• A Markov Jump Process for continuous modeling of state using discrete observations that
come at irregular times

• A multi-dimensional binary Markov process for modeling the onset of comorbidities
• A noisy-or network for modeling health measurements as symptoms of comorbidities

We are releasing these tools as free and open-source software, which we hope will help accelerate
progress on machine learning research of disease progression modeling.

4 Using Our Tools to Implement an Unsupervised DPM

We demonstrate our tools’ capabilities by implementing the unsupervised DPM by Wang et al.
described in [10]. The model utilizes all three newly implemented components to infer comorbidites
and disease stage from electronic medical records. The top layer is a Markov Jump Process that
reveals disease stage at discrete time points. The middle layer is a vector of comorbidities that are
either on or off at each time step with some probability according to disease stage. The last layer
consists of a noisy-or network where observations or measurements are triggered by comorbidities
or a leak term. Figure 1 provides an overview.

fore the time granularity of patient records vary sig-
nificantly across di↵erent patients, and for the same
patient over di↵erent time periods.

• Limited Supervision. For some diseases we have
very limited yet crucial domain knowledge available,
e.g. the known symptoms of a particular disease. In-
corporating the available domain knowledge into the
progression model is a nontrivial task.

To address these challenges, we propose an unsupervised
disease progression model. As show in Figure 1, our model is
composed of three layers: The top layer is a Markov Jump
Process which captures the continuous-time diseases state
transitions. The middle layer is a set of Markov chains
capturing the relationship between the hidden state tran-
sitions and the onset pattern of a set of comorbid conditions
(comorbidities). The third layer is a noisy-or network [14]
(Figure 2) capturing the relationship between those comor-
bidities and the observed clinical evidence. Note that in-
stead of linking the clinical observations directly to the dis-
ease progression states, we “group” them into comorbidities,
which tend to evolve coherently with the progression of dis-
ease. This abstraction also makes the learned DPM more ro-
bust and interpretable. An Expectation-Maximization (EM)
based algorithm is presented to estimate the parameters as
well as the hidden variables. We apply our model to a real-
world COPD patient cohort to demonstrate its capabilities.

It is worthwhile to highlight the following aspects of the
proposed model:

• Our model is unsupervised. We learn the entire dis-
ease progression trajectory from the observed patient
records without any training labels on the ground truth
stages that a patient was in.

• Our model learns the continuous-time disease progres-
sion trajectory even though the medical records were
only observed at discrete timestamps with irregular in-
tervals.

• Our model can “stitch together” partial disease tra-
jectories (i.e., incomplete records from individual pa-
tients) into a global path of disease progression.

• Our model can learn meaningful comorbidities associ-
ated with di↵erent disease stages. We allow the in-
jection of anchor findings, which are clinical features
that distinctly signifies the presence of a certain co-
morbidity, to improve the interpretability and medical
validity of our model.

2. RELATED WORK
Disease progression modeling is an important topic in

medical informatics [11]. Existing work on disease progres-
sion models have been proved e↵ective for drug develop-
ment and early intervention. For example, Post et al. [12]
proposed a family of models to describe the progression of
degenerative diseases (such as type 2 diabetes and Parkin-
son’s disease) as a function of disease process and treatment
e↵ects. De Winter et al. [3] developed a mechanism based
technique for modeling the progression of diabetes mellitus
by tracking the interaction between several key indicators.
Ito et al. [8] presented a model based on literature meta-
analysis to describe the longitudinal changes of patients with
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Figure 1: The outline of our model: S are progres-
sion state variables, X are comorbidity variables,
and O are observed clinical findings.
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Figure 2: The noisy-or Bayesian network (also
known as QMR-DT network). The clinical findings
can be activated by a present comorbidity, or by the
always-on leak term. The starred finding (O1) is an
anchor, which means it can only be activated by a
specific comorbidity (X1 in this case).

mild to moderate Alzheimer’s disease. These papers from
the medical field tend to be specific to a single target disease.
They require substantial domain knowledge on the progres-
sion, mechanism, and key indicators/measurements for the
target disease. This is not the case for our model because
we aim to learn a general-purpose model for any chronic dis-
ease based on a general input data type: Electronic Health
Records. We do not assume prior knowledge of either the
ground truth progression stages or the key indicators that
signify the stage transitions.

Another line of e↵orts, to which our approach belongs,
model the progression of disease using machine learning and
statistical techniques based on observational data, also re-
ferred to as evidence based modeling. For example, Jack-
son et al. [9] developed a multistage Hidden Markov Model
and applied it to an aneurysm screening study. Sukkar et
al. [15] applied Hidden Markov Model to Alzheimer’s dis-
ease. Cohen et al. [2] performed hierarchical clustering of
45 physiological, clinical, and treatment variables collected

Figure 1: Overview of DPM from Wang et al. [10]

Our implementation of the model from [10] not only provides full posterior estimates (as opposed to
point estimates from the EM algorithm), but takes advantage of pyMC3’s automatic differentiation
to enable the NUTS sampler[3]. NUTS is a self-tuning Hamiltonian Monte Carlo sampler which
takes advantage of the gradient of the likelihood to propose larger, more intelligent steps.

After implementing the model in pyMC3, we evaluated it using a synthetic dataset consisting of
N = 100 patients with 2 to 34 time points each, M = 4 disease states, K = 4 comorbidities, and
D = 16 types of observations, resulting in a total of 1609 clinical observations. We evaluated the ro-
bustness of the model to parameter initialization by comparing the model behavior when parameters
are initialized at random vs. initialized to their ground truth value. We found that a random initial-
ization rapidly finds the highest likelihood region achieving the same value of a near-equilibrium
initialization. Additionally, the inferred distribution of leak terms for both initialization scenarios
looks almost identical. The results are reported in Figure 2.
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Figure 2: Top row: Total model log-likelihood when using NUTS. When parameters are initialized
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